English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51831090      Online Users : 363
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/138286
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138286


    Title: An Enhanced Mondrian Anonymization Model based on Self-Organizing Map
    Authors: 左瑞麟
    Tso, Raylin
    Wang, Peter Shaojui
    Huang, Pin-Yen
    Tsai, Yu-An
    Contributors: 資科系
    Date: 2020-08
    Issue Date: 2021-12-09 16:09:02 (UTC+8)
    Abstract: In the era of big data, privacy preservation has been the focus for data mining. Mondrian anonymization is a state-of-the-art data anonymization algorithm for relational dataset, widely used in many classical syntactic privacy-preserving data mining methods, like k-anonymity, l-diversity, t-closeness, etc. Mondrian anonymization is named for its multidimensional data partitioning in geometric space to find the best partitions for data anonymization. However, one problem with using Mondrian anonymization is taking too much time and memory for the high-dimensional data. Another problem is that the Mondrian-based privacy preservation may lead to the unstable performance of data mining models. For example, in Mondrian-based k-anonymity, the accuracy results of data mining may drop dramatically with the growth of k value. For solving these problems, in this paper we propose an enhanced Mondrian anonymization model based on Self-Organizing Map (SOM-Mondrian). With the help of SOM, multidimensional data are converted from a high dimensional space into two-dimensional space; at the same time, preserving their topological properties of the input space. The resulting two-dimensional data are then used by Mondrian algorithm to find the best partitions for data anonymization. To our best knowledge, we are the first to propose SOM-based method for Mondrian anonymization. Experimental results show that, after applying our proposed method, the processing time of Mondrian anonymization decreases significantly from 12.11 seconds to 0.16 seconds; besides, the accuracy of data mining applications increases, about 2% higher than the results under the standard Mondrian anonymization, and also shows steadier and more robust (the degree of variation is reduced by 75%) to the varying k value.
    Relation: 2020 15th Asia Joint Conference on Information Security (AsiaJCIS)
    Data Type: conference
    DOI 連結: https://doi.org/10.1109/AsiaJCIS50894.2020.00026
    DOI: 10.1109/AsiaJCIS50894.2020.00026
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    20.pdf412KbAdobe PDF2243View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback