政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/137731
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113451/144438 (79%)
造訪人次 : 51244665      線上人數 : 916
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/137731


    題名: 基於深度學習框架之衛星圖像人造物切割
    Segmentation of Man-Made Structures in Satellite Images Using Deep Learning Approaches
    作者: 陳忠揚
    Chen, Chung-Yang
    貢獻者: 廖文宏
    Liao, Wen-Hung
    陳忠揚
    Chen, Chung-Yang
    關鍵詞: 深度學習
    衛星圖資
    語意分割
    影像強化
    無監督域適應
    Deep Learning
    Satellite Images
    Semantic Segmentation
    Image Enhancement
    Unsupervised Domain Adaptation
    日期: 2021
    上傳時間: 2021-11-01 12:19:34 (UTC+8)
    摘要: 遙測(remote sensing)是近年來影像處理熱門領域之一,該技術被廣泛應用於水土監測、環境監測、以及軍事類活動監控等多項應用,囿於衛星資料取得成本相對較高,致使提供學術研究的公開資料與相關研究之應用起步較晚,眾多研究中可以發現,針對衛星影像的語意切割(semantic segmentation)整體表現上仍然不佳,本研究將衛星影像分為同質性與異質性兩種資料,前者的訓練與測試資料,皆來自相同衛星及成像條件的影像,後者則是訓練和測試資料集隸屬於不同區域及季節之影像,分別探討如何透過影像增強與深度學習框架的方式,提升衛星影像的物件切割表現,以及透過「無監督域適應(unsupervised domain adaptation, UDA)」的技術,使模型面對更加複雜的衛星圖資,於跨域任務的影像分割仍保有一定的適應力。
    同質性衛星影像的應用,本研究透過訓練資料的前處理,使用深度學習中遷移學習之概念,載入預訓練模型,搭配模型再訓練、Mixed Pooling Module (MPM)模組應用以及相關參數調校後,找到最佳搭配組合,提升衛星影像之切割效能;前處理包括影像增強、高頻強化、邊緣銳化等方式,目標鎖定人造物體的建築與道路,提升整體影像切割校能的mIoU指標。最終,透過資料前處理、特徵強化模組、骨幹網路選擇之搭配,獲得83.5%的mIoU效能表現,與原始效能相比大約精進3%。
    異質性衛星影像的應用,本研究依序驗證Source Only、現有UDA技術以及域轉換與強化網路(Domain Transfer and Enhancement Network, DTEN)架構,透過調整其中的關鍵參數設定,試圖讓模型更有效執行跨域影像分割任務,最終超越UDA最佳效能mIoU指標3.6%,達到45.3%之表現。
    Analysis of remote sensing images is one important application of computer vision. It has been widely used in land and water surveillance, environmental monitoring, and military intelligence. Due to the relative high cost of obtaining satellite images and the lack of open data, academic research in satellite imagery analysis is gaining attention only recently. Many well-developed techniques in computer vision still have to prove their validity when satellite images are concerned. In this work, we attempt to tackle semantic segmentation of man-made structures in satellite images in two aspects: homogeneous and heterogenous datasets. The former contains images from the same satellite and imaging conditions in both training and test set, while in the latter case, training and test data are captured in different locations or seasons. To gain better performance, we have experimented with different strategies, including image enhancement, backbone substitution and architecture modification. We have also employed unsupervised domain adaptation (UDA) techniques to cope with heterogenous data, hoping that the model can still maintain its capability in cross-domain segmentation tasks.
    For homogeneous satellite images, our research uses transfer learning, image pre-processing, backbone replacement, mixed pooling module (MPM) and parameter tuning to find the combination that yields the best mIoU for building and road extraction. After extensive experiments, the highest mIoU is 83.5%, an improvement of 3% over existing techniques.
    For heterogeneous satellite images, our research tested and compared source only model, existing UDA methods, and domain transfer and enhancement network (DTEN). Experimental results indicate that DTEN has the best performance with an mIoU 45.3%, an improvement of 3.6% over state-of-the-art UDA techniques.
    參考文獻: [1] 維基百科:電腦視覺定義。
    https://en.wikipedia.org/wiki/Computer_vision
    [2] Aditya Kulkarni, Tharun Mohandoss, Daniel Northrup, Ernest Mwebaze, Hamed Alemohammad (arXiv 2020). Semantic Segmentation of Medium-Resolution Satellite Imagery using Conditional Generative Adversarial Network
    [3] Yilei Shi, Qingyu Li, Xiao Xiang Zhus (IEEE 2018). Building Footprint Generation Using Improved Generative Adversarial Networks
    [4] Mingyuan Fan, Shenqi Lai , Junshi Huang , Xiaoming Wei , Zhenhua Chai, Junfeng Luo, Xiaolin Wei. (arXiv 2021). Rethinking BiSeNet For Real-time Semantic Segmentation
    [5] Landsat-8資料集。
    https://zenodo.org/record/1154821#.YK0EFqgzZPY
    [6] Cityscapes資料集。
    https://www.cityscapes-dataset.com/
    [7] CamVid資料集。
    http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
    [8] Coco資料集。
    https://cocodataset.org/#home
    [9] Ade20k資料集。
    https://paperswithcode.com/dataset/ade20k
    [10] 繞極軌道衛星。
    https://web.fg.tp.edu.tw/~earth/learn/weather/collect4.htm
    [11] 同步軌道衛星。
    https://zh.wikipedia.org/wiki/氣象衛星
    [12] 福為五號。
    https://www.nspo.narl.org.tw/inprogress.php?c=20021501
    [13] Landsat系列衛星計畫。
    https://en.wikipedia.org/wiki/Landsat_program
    [14] Planet Labs公司。
    https://www.richitech.com.tw/全球中解析衛星影像簡介/
    [15] WorldView系列衛星。
    https://earth.esa.int/eogateway/missions/worldview/description
    [16] 法國Pléiades衛星。
    https://earth.esa.int/web/eoportal/satellite-missions/p/pleiades
    [17] 輻射解析度定義。
    https://www.csrsr.ncu.edu.tw/rsrs/ProperNoun.php
    [18] QuickBird系列介紹。
    https://www.richitech.com.tw/%E7%A9%BA%E9%96%93%E7%94%A2%E5%93%81%E9%8A%B7%E5%94%AE/%E6%95%B8%E4%BD%8D%E7%A9%BA%E9%96%93/quickbird/
    [19] WorldView4介紹。
    https://spacenews.com/digitalglobe-loses-worldview-4-satellite-to-gyro-failure/
    [20] 維基百科WorldView3解析度說明。
    https://en.wikipedia.org/wiki/WorldView-3
    [21] 維基百科Landsat-8解析度說明。
    https://en.wikipedia.org/wiki/Landsat_8
    [22] Tsung-Yi Lin Michael Maire Serge Belongie Lubomir Bourdev Ross Girshick James Hays Pietro Perona Deva Ramanan C. Lawrence Zitnick Piotr Dollar. (arXiv 2014). Microsoft COCO: Common Objects in Context.
    [23] Lecture 11: Detection and Segmentation. (Stanford University)
    http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf (p.24)
    [24] Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla. (arXiv 2015). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
    [25] CHAPTER 6 Deep-Learning.
    http://neuralnetworksanddeeplearning.com/chap6.html
    [26] ILSVRC歷年Top-5錯誤率。
    https://www.kaggle.com/getting-started/149448
    [27] Jonathan Long, Evan Shelhamer, Trevor Darrell. (CVPR 2015). Fully Convolutional Networks for Semantic Segmentation.
    [28] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. (arXiv 2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation.
    [29] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, Hanqing Lu. (arXiv 2018). Dual Attention Network for Scene Segmentation.
    [30] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn & Andrew Zisserman. (International Journal of Computer Vision 2010). The PASCAL Visual Object Classes (VOC) Challenge.
    [31] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, Alan Yuille. (CVPR 2014). The Role of Context for Object Detection and Semantic Segmentation in the Wild.
    [32] Holger Caesar, Jasper Uijlings, Vittorio Ferrari. (arXiv 2016). COCO-Stuff: Thing and Stuff Classes in Context.
    [33] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang, Stephen Lin, Han Hu. (arXiv 2020). Disentangled Non-Local Neural Networks.
    [34] Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He. (arXiv 2017). Non-local Neural Networks.
    [35] IOU(Intersection-over-Union)定義。
    https://www.researchgate.net/figure/Intersection-over-Union-IOU-calculation-diagram_fig2_335876570
    [36] Multimedia Laboratory. (The Chinese University of Hong Kong)
    https://mmlab.ie.cuhk.edu.hk/
    [37] Open-MMLab
    https://github.com/open-mmlab/mmsegmentation
    [38] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (arXiv 2018). A survey on deep transfer learning.
    [39] Vu, Tuan-Hung & Jain, Himalaya & Bucher, Maxime & Cord, Matthieu & Perez, Patrick. (CVPR 2019). ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation.
    [40] Wang, Zhonghao & Yu, Mo & Wei, Yunchao & Feris, Rogerio & Xiong, Jinjun & Hwu, Wen-mei & Shi, Humphrey. (arXiv:2020). Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic.
    [41] Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. (arXiv 2014). How transferable are features in deep neural networks.
    [42] Vijay Badrinarayanan, Alex Kendall , and Roberto Cipolla.(IEEE 2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
    [43] 王柏仁(2021,國立政治大學),基於非監督域適應之衛星圖資切割優化。
    [44] 對比伸展示意圖。
    https://www.researchgate.net/figure/Explanatory-illustration-of-contrast-stretching-transformation_fig9_44650125
    [45] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (arXiv 2017). Unpaired image-to-image translation using cycle-consistent adversarial networks.
    [46] Yilei Shi, Qingyu Li, Xiao Xiang Zhu. (IEEE 2017). Building Footprint Generation Using Improved Generative Adversarial Networks.
    [47] Qibin Hou, Li Zhang, Ming-Ming Cheng, Jiashi Feng. (arXiv 2020). Strip Pooling: Rethinking Spatial Pooling for Scene Parsing.
    [48] Artem Rozantsev, Mathieu Salzmann, Pascal Fua. (IEEE Transactions on Pattern Analysis and Machine Intelligence 2019). Beyond Sharing Weights for Deep Domain Adaptation.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    108971022
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108971022
    資料類型: thesis
    DOI: 10.6814/NCCU202101671
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    102201.pdf5961KbAdobe PDF2198檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋