Reference: | [1] 王承璋。2014。輔助老師之學生核心能力雷達圖群體學生模型之研發。碩士論文。私立元智大學,桃園縣,臺灣。 [2] 陳馨順。2015。運用關聯規則與分群技術探討放射科實習學生網路學習行為。碩士論文。國立臺北護理健康大學,臺北市,臺灣。 [3] Allison, P. D., & Liker, J. K. (1982). Analyzing sequential categorical data on dyadic interaction: A comment on Gottman. [4] Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge university press. [5] Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of educational data mining, 1(1), 3-17. [6] Bakhshinategh, B., Zaiane, O. R., ElAtia, S., & Ipperciel, D. (2018). Educational data mining applications and tasks: A survey of the last 10 years. Education and Information Technologies, 23(1), 537-553. [7] Chang, S. C., Hsu, T. C., Kuo, W. C., & Jong, M. S. Y. (2020). Effects of applying a VR‐based two‐tier test strategy to promote elementary students’ learning performance in a Geology class. British Journal of Educational Technology, 51(1), 148-165. [8] Chen, F., & Cui, Y. (2020). Utilizing Student Time Series Behaviour in Learning Management Systems for Early Prediction of Course Performance. Journal of Learning Analytics, 7(2), 1-17. [9] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. [10] Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11), 4715-4729. [11] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. [12] Dozat, T. (2016). Incorporating nesterov momentum into adam. [13] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211. [14] Fotso, J. E. M., Batchakui, B., Nkambou, R., & Okereke, G. Algorithms for the Development of Deep Learning Models for Classification and Prediction of Behaviour in MOOCS. In 2020 IEEE Learning With MOOCS (LWMOOCS) (pp. 180-184). IEEE. [15] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O`Reilly Media. [16] GSEQ, from: https://www.mangold-international.com/en/products/software/gseq [17] Hatcher, W. G., & Yu, W. (2018). A survey of deep learning: Platforms, applications and emerging research trends. IEEE Access, 6, 24411-24432. [18] Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., & Navarro-Colorado, B. (2019). A systematic review of deep learning approaches to educational data mining. Complexity, 2019. [19] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107-116. [20] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [21] Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233. [22] Keras, from: https://github.com/keras-team/keras [23] MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297). [24] Oeda, S., & Hashimoto, G. (2017). Log-data clustering analysis for dropout prediction in beginner programming classes. Procedia computer science, 112, 614-621. [25] Okubo, F., Yamashita, T., Shimada, A., & Ogata, H. (2017, March). A neural network approach for students` performance prediction. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 598-599). [26] Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern recognition, 44(3), 678-693. [27] Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. [28] Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. [29] Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. [30] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65. [31] Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190. [32] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science. [33] Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43-49. [34] Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437. [35] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. [36] Tslearn, from: https://github.com/tslearn-team/tslearn/ |