English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51678085      Online Users : 607
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/137560
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137560


    Title: Mathematical analysis of spread models: From the viewpoints of deterministic and random cases
    Authors: 班榮超;洪芷漪
    Ban, Jung-Chao;Hong, Jyy-I
    Chang, Chih-Hung;Wu, Yu-Liang
    Contributors: 應數系
    Date: 2021-09
    Issue Date: 2021-10-27 11:00:02 (UTC+8)
    Abstract: This paper models the spread of the pandemic with mathematical analysis to provide predictions for different classes of individuals. We consider the spread by using a branching process and a substitution dynamical system as random and deterministic models, respectively, to approximate the pandemic outbreak. Both approaches are based on the assumption of Markov processing. The deterministic model provides an explicit estimate for the proportion of individuals of a certain type in the particular generation given any initial condition, where a generation means a unit of observation time. The proportion relates to the matrix derived from the Markov setting. In addition, the methodology reveals the efficiency of epidemic control policies, such as vaccine injections or quarantine, by the relative spread rate that is used for the prediction of the number of individuals of a certain type. On the other hand, the stochastic approximation has more of an empirical impact than the deterministic one does. Our investigation explicitly exhibits the spread rate of a certain type with respect to an initial condition of any type. After estimating the average spread rate, the effect of adopting a particular policy can be evaluated. The novelty of this elucidation lies in connecting these two models and introducing the idea of the transition spread model between two topological spread models to capture the change of the spread patterns, which is a real-world phenomenon during the epidemic periods due to changes in the environment or changes in disease control policies. Roughly speaking, the deterministic model is a special case of the stochastic model under some particular probability. Most importantly, with the help of the stochastic model, we establish the transition processing of two deterministic models, which is called a transition model. In other words, any stochastic model is “bounded” by two deterministic models. Moreover, a computable way has been established to predict the long-term spread rate due to the Markov properties of the models and matrix representations for the spread patterns.
    Relation: Chaos, Solitons and Fractals, Vol.150, pp.111106
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.chaos.2021.111106
    DOI: 10.1016/j.chaos.2021.111106
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2369View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback