Reference: | [1] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learn- ing for natural language processing,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 2, pp. 604–624, 2020. [2] R.Jozefowicz,W.Zaremba,andI.Sutskever,“Anempiricalexplorationofrecurrent network architectures,” in International conference on machine learning. PMLR, 2015, pp. 2342–2350. [3] S.HochreiterandJ.Schmidhuber,“Longshort-termmemory,”Neuralcomputation, vol. 9, no. 8, pp. 1735–1780, 1997. [4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017. [5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018. [6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019. [7] K. Potdar, T. S. Pardawala, and C. D. Pai, “A comparative study of categorical vari- able encoding techniques for neural network classifiers,” International journal of computer applications, vol. 175, no. 4, pp. 7–9, 2017. [8] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre- sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013. [9] Q. Liu, M. J. Kusner, and P. Blunsom, “A survey on contextual embeddings,” arXiv preprint arXiv:2003.07278, 2020. [10] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recog- nition,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020. [11] V.KrishnanandV.Ganapathy,“Namedentityrecognition,”StanfordLectureCS229, 2005. [12] S. R. Eddy, “Hidden markov models,” Current opinion in structural biology, vol. 6, no. 3, pp. 361–365, 1996. [13] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilis- tic models for segmenting and labeling sequence data,” 2001. [14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d`Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an- imperative-style-high-performance-deep-learning-library.pdf [15] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-demos.6 [16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [17] I.LoshchilovandF.Hutter,“Decoupledweightdecayregularization,”arXivpreprint arXiv:1711.05101, 2017. |