English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50968692      Online Users : 928
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/137293
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137293


    Title: 暫現狀態下具長域隨機漫步在整數晶格點的格林函數與容積的漸近行為
    Asymptotic Behaviors of the Green Function and Capacity for Transient State Random Walks with Long-Range Interactions
    Authors: 陳濬程
    Chen, Jiun-Cheng
    Contributors: 陳隆奇
    Chen, Lung-Chi
    陳濬程
    Chen, Jiun-Cheng
    Keywords: 長域隨機漫步
    格林函數
    容積
    Green Function
    Capacity
    Long-Range Random Walk
    Date: 2021
    Issue Date: 2021-10-01 10:05:32 (UTC+8)
    Abstract: 在整數晶格 Zd 上的隨機漫步 S_n^x = x + X1 + X2 +...+ Xn,Xi, i = 1, 2, · · · , n 皆獨立且具有相同分佈 D(x)。此論文,我們假設 D(x) 在 Zd 空間情形下擁有對稱性且當 |x| → ∞ 時,遞減速率為 |x|−d−α,其中 α ∈ (0, ∞) \\ {2} 且 d > α ∧ 2。本文主要是探討此具長域隨機漫步下的一些 漸近行為。第一個主要結果在於獲得此模型之格林函數的漸近行為,此外 我們還得到主要項係數及其收斂速度;第二個主要結果在討論容積的漸近 行為,並且進一步得到在長域隨機漫步下的 Wiener’s Criterion。
    Let S_n^x = x + X1 + X2 +...+ Xn are independent identically distributed random vectors with distribution D(x). In the thesis, we suppose that the distribution D(x) is symmetric on Zd and the rate of decayisoforder|x|−d−α as|x|→∞withα∈(0,∞)\\{2}andd>α∧2,where a ∧ b = min {a, b}. The purpose of the thesis is to investigate asymptotic behaviors of the long-range random walk. First of all, we get the asymptotic behavior of the Green function. Moreover, we obtain the coefficient of the main term and its rates of convergence. Secondly, we discuss the asymptotic behavior of the capacity for the long-range random walk. Moreover, we derive the Wiener’s Criterion for the long-range random walk.
    Reference: [1] Béla Bollobás. Random Graphs. Cambridge University Press, Cambridge, 2001.
    [2] Maury Bramson, Ofer Zeitouni, and Martin P. W. Zerner. Shortest spanning trees and a counterexample for random walks in random environments. The Annals of Probability, 34(3):821 – 856, 2006.
    [3] George Green. An Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism. Nottingham, July 1828.
    [4] N. Jain and S. Orey. On the range of random walk. Israel Journal of Mathematics, 6(4): 373–380, 1968.
    [5] Gregory F. Lawler. Intersections of random walks / Gregory F. Lawler. Probability and its applications. Birkhäuser, Boston, 1991.
    [6] KARL PEARSON. The problem of the random walk. Nature, 72(1865):294–294, 1905.
    [7] Serguei Popov. Two-Dimensional Random Walk: From Path Counting to Random Interlacements. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2021.
    [8] C E Soteros and S G Whittington. The statistical mechanics of random copolymers. Journal of Physics A: Mathematical and General, 37(41):R279–R325, sep 2004.
    [9] Michel Talagrand. Spin glasses : a challenge for mathematicians : cavity and mean field models / Michel Talagrand. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, v. 46. Springer, New York, 2003.
    [10] Robert Brown F.R.S. Hon. M.R.S.E. & R.I. Acad. V.P.L.S. Xxvii. a brief account of microscopical observations made in the months of june, july and august 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21):161–173, 1828.
    Description: 碩士
    國立政治大學
    應用數學系
    108751012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751012
    Data Type: thesis
    DOI: 10.6814/NCCU202101556
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101201.pdf445KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback