English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113869/144892 (79%)
Visitors : 51900305      Online Users : 396
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/137284
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137284


    Title: 運用機器學習模型分析影響公司風險的ESG因子:以台灣市場為例
    Machine Learning application on the ESG factor analysis on Firm Risks
    Authors: 孫嘉蔚
    Sun, Chia-Wei
    Contributors: 楊曉文
    Yang, Sharon. S.
    孫嘉蔚
    Sun, Chia-Wei
    Keywords: 機器學習
    ESG
    公司風險
    股價崩跌風險
    Machine Learning
    ESG
    Firm Risk
    Stock Crash Risk
    Date: 2021
    Issue Date: 2021-10-01 10:03:16 (UTC+8)
    Abstract: 本研究採用機器學習模型,以模型找出何種ESG因子對於台灣企業的公司風險與股價崩跌有較高的解釋力,拆分企業社會責任對於風險的影響。本次研究用梯度提升決策樹(Gradient Boost Trees,以下稱GDBT)、XGBoost、隨機森林(Random Forest),並使用Refinitiv資料庫中的綜合分數、環境分數、社會分數與公司治理分數下的14個指標作為ESG變數。我採用公司特有風險與兩項股價崩跌風險指標(NCSKEW、DUVOL)作為風險變數,以2010-2019年間的992筆台灣公司股價資料計算而成,期望能探究機器學習模型在ESG評分與公司個別風險的效果。
    而實證結果顯示,使用XGBoost模型與GDBT在對公司風險與股價崩跌風險模型解釋力上比起隨機森林有較佳的表現。進一步透過分析因子重要性後,數據結果顯示ESG分數綜合指標如ESG綜合分數在公司風險的重要度表現較不佳,顯示比起採用社會責任細項指標,投資人若想依照綜合分數作為投資組合風險管理考量,較無效率。社會類別如企業社會責任策略分數、社區分數與人權分數因子中,在公司特有風險與股價崩跌風險當中,皆具有一定程度的影響性,可以作為企業內部風險管理考量上的指標依據。
    This study approaches three machine learning models to find out which ESG perfor-mance factors have significant impact on firm specific risk and stock crash risks ( NCSKEW,DUVOL ). Three models such as Gradient Boost Trees (Gradient Boost Trees, hereinafter referred to as GDBT), XGBoost, and Random Forest are applied into analyzing the effect of 14 ESG Performance from Reuters database on firm specific risks and stock crash risks. The sample of the study is mainly based Taiwanese firms in Refinitiv ESG database, ranging from the period of 2010 to 2019.The empirical results show that XGBoost and GDBT have the better performance than Random Forest in ex-plaining the company risk and stock crash risk. Through factor importance analysis, I found that combined ESG score are less important in the part of firm risks. This shows that rather than taking ESG composite score into account, investors should consider in-dividual dimensions of Environmental, Social, and Governance indicators for further portfolio risk management.
    Social categories, such as corporate social responsibility strategy scores, communi-ty scores, and human rights score, have a certain degree of influence in the firm specific risks and stock crash risks. These scores could be indicators for internal risk manage-ment on the scope of portfolio management and firm risk management.
    Reference: 郭怡萱(2018)。ESG績效對公司風險之影響。國立政治大學財務管理所碩士論文,台北市。
    國立臺北大學. (2021). 台灣永續投資調查. http://www.aacsb.ntpu.edu.tw/twsvi/uploads/file/cus2_zu55548c6z.pdf
    Annisa, A. N., & Hartanti, D. (2021). The Impact of Environmental, Social, and Gov-ernance Performance on Firm Risk in the ASEAN-5 Countries, 2011-2017. In Asia-Pacific Research in Social Sciences and Humanities Universitas Indonesia Conference (APRISH 2019) (pp. 625-634). Atlantis Press.
    Antoncic, M., Bekaert, G., Rothenberg, R. V., & Noguer, M. (2020). Sustainable In-vestment-Exploring the Linkage between Alpha, ESG, and SDG`s. ESG, and SDG`s (August 2020).
    Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with applications, 42(20), 7046-7056.
    Broadstock, D. C., Chan, K., Cheng, L. T., & Wang, X. (2021). The role of ESG per-formance during times of financial crisis: Evidence from COVID-19 in China. Fi-nance research letters, 38, 101716.
    Chen, J., Hong, H., & Stein, J. C. (2001). Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. Journal of financial economics, 61(3), 345-381.
    Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
    Chen, Q., & Liu, X. Y. (2020, May). Quantifying ESG Alpha in Scholar Big Data: An Automated Machine Learning Approach. In ACM International Conference on AI in Finance.
    Crane, A., Matten, D., & Moon, J. (2008). Corporations and citizenship: Business, re-sponsibility and society. Cambridge University Press.
    De Lucia, C., Pazienza, P., & Bartlett, M. (2020). Does good ESG lead to better finan-cial performances by firms? Machine learning and logistic regression models of public enterprises in Europe. Sustainability, 12(13), 5317.
    Edmans, A. (2011). Does the stock market fully value intangibles? Employee satisfac-tion and equity prices. Journal of Financial economics, 101(3), 621-640.
    Ferriani, F., & Natoli, F. (2020). ESG risks in times of COVID-19. Applied Econom-ics Letters, 1-5.
    Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-chine. Annals of statistics, 1189-1232.
    Godfrey, P. C. (2005). The relationship between corporate philanthropy and sharehold-er wealth: A risk management perspective. Academy of management review, 30(4), 777-798.
    Godfrey, P. C., Merrill, C. B., & Hansen, J. M. (2009). The relationship between cor-porate social responsibility and shareholder value: An empirical test of the risk management hypothesis. Strategic management journal, 30(4), 425-445.
    Guo, T. (2020). Esg2risk: A deep learning framework from esg news to stock volatility prediction. Available at SSRN 3593885.
    Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of finance, 55(3), 1263-1295.
    Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). IEEE.
    Huseynov, F., & Klamm, B. K. (2012). Tax avoidance, tax management and corporate social responsibility. Journal of Corporate Finance, 18(4), 804-827.
    Ilhan, E., Sautner, Z., & Vilkov, G. (2021). Carbon tail risk. The Review of Financial Studies, 34(3), 1540-1571.
    Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of financial economics, 3(4), 305-360.
    Jo, H., & Na, H. (2012). Does CSR reduce firm risk? Evidence from controversial in-dustry sectors. Journal of Business Ethics, 110(4), 441-456.
    Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock market prices using random forest. arXiv preprint arXiv:1605.00003.
    Kim, Y., Li, H., & Li, S. (2014). Corporate social responsibility and stock price crash risk. Journal of Banking & Finance, 43, 1-13.
    KPMG. (2020). The KPMG Survey of Sustainability Reporting 2020. https://assets.kpmg/content/dam/kpmg/xx/pdf/2020/11/the-time-has-come.pdf
    Liu, H. (2020). Stock Selection Strategy Based on Support Vector Machine and eX-treme Gradient Boosting Methods. 2020 the 4th International Conference on Big Data Research, 36-39.
    Margot, V., Geissler, C., de Franco, C., & Monnier, B. (2021). ESG Investments: Fil-tering versus Machine Learning Approaches. Applied Economics and Finance, 8(2), 1-16.
    Minor, D., & Morgan, J. (2011). CSR as reputation insurance: Primum non nocere. California Management Review, 53(3), 40-59.
    Mitsuzuka, K., Ling, F., & Ohwada, H. (2017, February). Analysis of CSR activities affecting corporate value using machine learning. In Proceedings of the 9th Inter-national Conference on Machine Learning and Computing (pp. 11-14).
    Murata, Hamori, 2021. ESG Disclosures and Stock Price Crash Risk. Journal of Risk and Financial Management, vol. 14(2), pages 1-20
    Porter, M. E., & Kramer, M. R. (2006). Strategy & Society. Harvard Business Review, 84.
    Qin, Q., Wang, Q.-G., Li, J., & Ge, S. S. (2013). Linear and nonlinear trading models with gradient boosted random forests and application to Singapore stock market.
    Reber, B., Gold, A., & Gold, S. (2021). ESG Disclosure and Idiosyncratic Risk in Ini-tial Public Offerings. Journal of Business Ethics, 1-20.
    Rokach, L., & Maimon, O. Z. (2007). Data mining with decision trees: theory and ap-plications (Vol. 69). World scientific.
    Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of in-trinsic motivation, social development, and well-being. American psycholo-gist, 55(1), 68.
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under condi-tions of risk. The journal of finance, 19(3), 425-442.
    Shishkina, A., Dubykovskyy, V., Kosowski, R., & Ramakrishnan, R. (2020). MA-CHINE LEARNING AND RISK-MANAGED INVESTING.
    Sunder, S. (2010). Riding the accounting train: from crisis to crisis in eighty years. Pa-per presented at the Presentation at the Conference on Financial Reporting, Audit-ing and Governance, Lehigh University, Bethlehem, PA.
    Tan, Z., Yan, Z., & Zhu, G. (2019). Stock selection with random forest: An exploitation of excess return in the Chinese stock market. Heliyon, 5(8), e02310.
    Tasnia, M., AlHabshi, S. M. S. J., & Rosman, R. (2020). The impact of corporate so-cial responsibility on stock price volatility of the US banks: A moderating role of tax. Journal of Financial Reporting and Accounting.
    van Doorn, J., Onrust, M., Verhoef, P. C., & Bügel, M. S. (2017). The impact of cor-porate social responsibility on customer attitudes and retention—the moderating role of brand success indicators. Marketing Letters, 28(4), 607-619.
    Wahba, H. (2008). Does the market value corporate environmental responsibility? An empirical examination. Corporate Social Responsibility and Environmental Man-agement, 15(2), 89-99.
    World Economic Forum. (2020). Global Risk Report 2020. http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf
    Yellen, J. L. (1984). Efficiency wage models of unemployment. The american economic review, 74(2), 200-205.
    Zhou, F., Zhang, Q., Sornette, D., & Jiang, L. (2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Ap-plied Soft Computing, 84, 105747.
    Description: 碩士
    國立政治大學
    金融學系
    108352001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108352001
    Data Type: thesis
    DOI: 10.6814/NCCU202101589
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200101.pdf1911KbAdobe PDF230View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback