Reference: | [1] Black, F., and Litterman, R. Global portfolio optimization. Financial analysts journal 48, 5 (1992), 28–43. [2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016). [3] Chang, E. Why you likely have too many mutual funds or etfs, Sep 2016. [4] Cogneau, P., and Hübner, G. The 101 ways to measure portfolio performance. Available at SSRN 1326076 (2009). [5] Fischer, T., and Krauss, C. Deep learning with long shortterm memory networks for financial market predictions. European Journal of Operational Research 270, 2 (2018), 654 – 669. [6] Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error in actorcritic methods. In International Conference on Machine Learning (2018), PMLR, pp. 1587–1596. [7] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actorcritic: Offpolicy maximum entropy deep reinforcement learning with a stochastic actor, 2018. [8] Johansen, A., and Sornette, D. Stock market crashes are outliers. The European Physical Journal BCondensed Matter and Complex Systems 1, 2 (1998), 141–143. [9] Johansen, A., and Sornette, D. Large stock market price drawdowns are outliers. Journal of Risk 4 (2002), 69–110. [10] Kahneman, D., and Tversky, A. An analysis of decision under risk. Econometrica 36 (2000). [11] Krauss, C., Do, X. A., and Huck, N. Deep neural networks, gradientboosted trees, random forests: Statistical arbitrage on the s&p 500. European Journal of Operational Research 259, 2 (2017), 689 – 702. [12] Levine, S., Finn, C., Darrell, T., and Abbeel, P. Endtoend training of deep visuomotor policies. The Journal of Machine Learning Research 17, 1 (2016), 1334–1373. [13] MagdonIsmail, M., and Atiya, A. F. Maximum drawdown. Risk Magazine 17, 10 (2004), 99–102. [14] Markowitz, H. Portfolio selection. The Journal of Finance 7, 1 (1952), 77–91. [15] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013). [16] Moody, J., and Lizhong Wu. Optimization of trading systems and portfolios. In Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr) (1997), pp. 300–307. [17] Moody, J., and Saffell, M. Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks 12, 4 (2001), 875–889. [18] Moody, J., Wu, L., Liao, Y., and Saffell, M. Performance functions and reinforcement learning for trading systems and portfolios. Journal of Forecasting 17, 56 (1998), 441–470. [19] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. In International conference on machine learning (2015), PMLR, pp. 1889–1897. [20] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017). [21] Sharpe, W. F. The sharpe ratio. The Journal of Portfolio Management 21, 1 (1994), 49–58. [22] Silver, D., Lever, G.,Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic policy gradient algorithms. In International conference on machine learning (2014), PMLR, pp. 387–395. [23] Statman, M. How many stocks make a diversified portfolio? Journal of financial and quantitative analysis (1987), 353–363. [24] Tversky, A., and Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty 5, 4 (Oct 1992), 297–323. [25] Willenbrock, S. Diversification return, portfolio rebalancing, and the commodity return puzzle. Financial Analysts Journal 67, 4 (2011), 42–49. |