English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51583220      Online Users : 992
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137165


    Title: 大數據分析於GPU平台之效能評估:以影像辨識為例
    Evaluation of Big Data Analytical Performance on GPU Platforms: Computer Vision as an Example
    Authors: 曾豐源
    Tseng, Feng-Yuan
    Contributors: 胡毓忠
    Hu, Yuh-Jong
    曾豐源
    Tseng, Feng-Yuan
    Keywords: 大數據分析
    深度學習
    ImageNet
    NVIDIA
    GPU
    NVIDIA DGX A100
    NVIDIA DGX Station
    Big Data Analysis
    Deep Learning
    ImageNet
    NVIDIA
    GPU
    NVIDIA DGX A100
    NVIDIA DGX Station
    Date: 2021
    Issue Date: 2021-09-02 18:17:33 (UTC+8)
    Abstract: 本研究以ImageNet Large Scale Visual Recognition Challenge (ILSVRC)作為資料集,結合ResNet50深度學習模型,從企業角度為出發點,比較不同的GPU運算環境在AI 大數據分析流程中,探討硬體效能及性價比。本研究以政大電算中心私有雲NVIDIA DGX A100、NVIDIA DGX Station,以及Desktop Computer三種GPU運算環境進行效能測試,並且利用系統監控技術,取得各流程中硬體資源的使用情況,並分析總體效能。因此實驗結果顯示,NVIDIA DGX A100在訓練階段能夠減少模型訓練時間,而在上線階段Desktop Computer其性價比優於NVIDIA DGX A100和NVIDIA DGX Station。
    This research adopts the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as data set, combined with the ResNet50 deep learning model to compare the performance and cost-effectiveness of a hardware under different GPU computing environments applied throughout the AI big data analysis process from an enterprise’s perspective. Performance tests are conducted under three different GPU computing environments, including NVIDIA DGX A100 and NVIDIA DGX Station, hosted as two seperate private clouds owned by the NCCU Computer Center, and the typical desktop computer. We use the system monitoring technology to obtain the usage of hardware resources in each analysis process and to examine the overall performance. The results show that NVIDIA DGX A100 can reduce the time needed for model training during training phase, while Desktop Computer is more cost-effective than NVIDIA DGX A100 and NVIDIA DGX Station during the online phase.
    Reference: [1] Nvidia dali documentation. https://docs.nvidia.com/deeplearning/dali/user-guide/docs/. [Online; accessed 30May2021].
    [2] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and FeiFei, L. Imagenet: A largescale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (2009), Ieee, pp. 248–255.
    [3] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.
    [4] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012), 1097–1105.
    [5] Lawrence, J., Malmsten, J., Rybka, A., et al. Comparing tensorflow deep learning performance using cpus, gpus, local pcs and cloud.
    [6] Lin, C.Y., Pai, H.Y., and Chou, J. Comparison between baremetal, container and vm using tensorflow image classification benchmarks for deep learning cloud platform. In CLOSER (2018), pp. 376–383.
    [7] Peter Mattson, C. C., and Cody Coleman, e. a. Mlperf training benchmark, 2020.
    [8] Reddi, V. J., Cheng, C., and David Kanter, e. a. Mlperf inference benchmark, 2020.
    [9] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions, 2014.
    [10] Wikipedia contributors. Huang’s law — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Huang%27s_law&oldid=996423603, 2020. [Online; accessed 27January2021].
    [11] Wikipedia contributors. Imagenet — Wikipedia, the free encyclopedia, 2021. [Online; accessed 26May2021].
    [12] Wikipedia contributors. Kubernetes — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=1024839217, 2021. [Online; accessed 28May2021].
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    107971025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107971025
    Data Type: thesis
    DOI: 10.6814/NCCU202101203
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    102501.pdf2230KbAdobe PDF2177View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback