政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/137146
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50799311      Online Users : 784
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137146


    Title: 以專利分析方法探討生物科技產業之知識來源、知識影響力與專利價值
    Investigating Knowledge Source, Knowledge Impact and Patent Value of Biotechnology Industry Based on Patent Analysis
    Authors: 李耕佑
    Lee, Keng-Yo
    Contributors: 吳豐祥
    李沛錞

    Wu, Feng-Shang
    Lee, Pei-Chun

    李耕佑
    Lee, Keng-Yo
    Keywords: 專利分析
    生物科技
    知識來源
    知識影響力
    專利價值
    專利訴訟
    Patent Analysis
    Biotechnology
    Knowledge Source
    Knowledge Impact
    Patent Value
    Patent Litigation
    Date: 2021
    Issue Date: 2021-09-02 18:12:01 (UTC+8)
    Abstract: 當前的生物科技產業正處於快速成長、高度競爭的階段,做為公認為最具發展潛力及影響人類健康與生活品質最大的新興科技產業之一,先進國家為競逐生物科技產業的市場與領導地位,紛紛投入資源進行研發。因此,掌握產業發展的動態及模式,建構分析與預測生物科技產業之觀察指標的重要性可見一斑。生物科技產業具有高度知識基礎性以及仰賴專利保護制度之特性,因此專利成為分析生物科技產業知識之重要代理變數。故本研究運用專利計量方法,透過分析生物科技產業專利特徵在時序上的變化及其與其他產業之差異,以期能更整體且客觀的了解生物科技產業。本研究共萃取及使用二十項專利特徵,其中包括知識來源層面的十一項以及知識影響力層面的九項。此外,本研究亦連結專利的涉訟紀錄,用以探討專利價值與專利特徵之關係,並建立生物科技產業的訴訟機率模型。
    本研究透過專利計量分析的結果發現,隨著時間推進,生物科技產業知識的產生,逐漸引入更多的人力以及更多元的知識來源,惟其權利歸屬仍以企業端為主,也高度集中於特定國家。此外,在權利範圍、泛用程度以及跨國佈局上亦日益提升。而與其他產業相較,生物科技產業的知識與專利的知識來源與影響力均更集中在特定的技術領域、產業、組織與人員之中。同時也仰賴更多的人才與先前技術,並在法律、地理和時間三個維度上,有更廣泛的影響。這也反映出生物科技產業的知識有著高度的專業性、知識基礎性、複雜性等特質。本研究並以專利的涉訟與否作為專利價值的代理變數,進一步發現高價值的生物科技產業專利具備更強烈的這些特質,這也印證先前研究有關特徵和價值之間的分析結果。最後本研究亦建立一包含八項專利特徵的生物科技產業訴訟機率模型。
    The current biotechnology industry is in a stage of rapid growth and high competition. It is recognized as one of the emerging technology industries with the greatest potential and impact on human health and quality of life. Therefore, developed countries have invested resources in research and development in order to compete for the market and leadership position. Therefore, the importance of grasping the dynamics and patterns of industrial development and constructing observation indicators for analysis and prediction of the biotechnology industry can be seen. The biotechnology industry is highly knowledge-based and relies on the patent system. That makes the use of patents is an ideal target for analyzing the knowledge of the biotechnology industry. This study uses patent analysis as a method to analyze the temporal changes of each patent characteristics and the difference between the biotechnology other industries, in order to have a more overall and objective understanding of the biotechnology industry. Among them, this study used 20 patent characteristics, including 11 at the level of knowledge source and 9 at the level of knowledge impact. In addition, patent litigation records are also linked to explore the relationship between patent value and patent characteristics, and to further establish a litigation probability model for the biotechnology industry.
    This study found that as time progresses, the generation of knowledge in the biotechnology industry gradually introduces more talents and more diverse sources of knowledge. However, the ownership of patent rights is dominated by the enterprise and highly concentrated in specific countries. In addition, the scope of rights, the degree of universal use, and the multinational layout are also increasing. Compared with other industries, the knowledge sources and impact of biotechnology industry knowledge and patents are more concentrated in specific technical fields, industries, organizations, and personnel. At the same time, it also relies on more talents and prior technologies, and has a broader impact in the three dimensions of law, geography and time. This also reflects that the knowledge of the biotechnology industry has the characteristics of a high degree of professionalism, knowledge based, and complexity. This study also found that patents with higher value have stronger characteristics, which also confirms the analysis results between the characteristics and values of previous studies. Finally, this study also established a litigation probability model for the biotechnology industry that includes 8 patent characteristics.
    Reference: 1. 行政院. (2016). 臺灣生物經濟發展方案核定本.
    2. 吳忠勳等. (2019). 生技產業白皮書. 台北市: 工業局.
    3. 巫文玲. (2016). 新藥研發臨床試驗成功率之現況. 生物技術開發中心
    4. 周延鵬. (2006). 一堂課 2000 億: 智慧財產的戰略與戰術. 台北市: 商訊文化.
    5. 洪德生, & 孫智麗. (2002). 生物科技人力供需問題研究.
    6. 洪德欽. (2011). 歐盟與美國生物科技政策 (Vol. 1010003088): 中華民國政府出版品.
    7. 馬維揚. (2005). 世界各國發展生技聚落的經驗與啟示.
    8. 陳乃華. (2010). 專利權評價模式之實證研究. 台灣銀行季刊, 61(2), 269-281.
    9. 陳桂恒, & 蘇宜成. (2012). 生技醫藥研發成果商業化理論與實務:技術、法規、智財、商業及策略評估: 華泰文化事業股份有限公司.
    10. 陳達仁, & 黃慕萱. (2018). 專利資訊檢索、分析與策略 (2 ed.): 華泰文化.
    11. 陳龍昇. (2014). 專利法: 元照出版.
    12. 陳豐年. (2011). 專利權之歷史溯源與利弊初探.
    13. 馮震宇. (2004). 專利商品化模式之探討. In: 智慧財產權月刊.
    14. 黃銘傑. (2012). 申請專利範圍, 請求項及更正之法律議題研析.
    15. 黃慕萱, & 何蕙菩. (2007). 圖書資訊學知識來源與知識擴散學科之研究. 圖書資訊學刊, 5(1&2), 1-30.
    16. 經濟部投資業務處. (2008). 生物科技產業分析及投資機會.
    17. 謝文昌, & 陳樹榮. (2017). 從技術知識進步鏈辨識技術機會之研究: 以 telematics 為例. 資訊管理學報, 24(4), 369-408.
    18. Abbas, A., Zhang, L., & Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World patent information, 37, 3-13.
    19. Allison, J. R., Lemley, M. A., Moore, K. A., & Trunkey, R. D. (2003). Valuable patents. Geo. Lj, 92, 435.
    20. Appleyard, M. M. (1996). How does knowledge flow? Interfirm patterns in the semiconductor industry. Strategic management journal, 17(S2), 137-154.
    21. Arundel, A. V., van Beuzekom, B., & Gillespie, I. (2007). Defining biotechnology–carefully. Trends in biotechnology, 25(8), 331-332.
    22. Basberg, B. L. (1987). Patents and the measurement of technological change: a survey of the literature. Research policy, 16(2-4), 131-141.
    23. Bessen, J., & Meurer, M. J. (2005). Lessons for patent policy from empirical research on patent litigation. Lewis & Clark L. Rev., 9, 1.
    24. BIO. (n.d.). What is Biotechnology? Retrieved from https://www.bio.org/what-biotechnology
    25. Birch, K. (2020). Technoscience rent: Toward a theory of rentiership for technoscientific capitalism. Science, Technology, & Human Values, 45(1), 3-33.
    26. Branstetter, L., & Ogura, Y. (2005). Is academic science driving a surge in industrial innovation? Evidence from patent citations (0898-2937). Retrieved from
    27. Callaert, J., Van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006). Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3-20.
    28. Carayannopoulos, S., & Auster, E. R. (2010). External knowledge sourcing in biotechnology through acquisition versus alliance: A KBV approach. Research policy, 39(2), 254-267.
    29. Cassiman, B., Veugelers, R., & Zuniga, P. (2008). In search of performance effects of (in) direct industry science links. Industrial and Corporate Change, 17(4), 611-646.
    30. CBD. (1992). Convention on Biological Diversity. Retrieved from https://www.cbd.int/convention/articles/?a=cbd-02
    31. Clarivate. (2018a). Derwent Innovation: Patent Family Collapse FAQ. Retrieved from https://support.clarivate.com/Patents/s/article/Derwent-Innovation-Patent-Family-Collapse-FAQ?language=en_US
    32. Clarivate. (2018b). Derwent LitAlert: Frequently asked questions about database content. Retrieved from https://support.clarivate.com/Patents/s/article/Derwent-LitAlert-Frequently-asked-questions-about-database-content?language=en_US
    33. Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: the two faces of R & D. The Economic Journal, 99(397), 569-596.
    34. Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly, 35(1), 128-152.
    35. Cremers, K. (2004). Determinants of patent litigation in Germany. ZEW-Centre for European Economic Research Discussion Paper(04-072).
    36. Cronin, B., & Pearson, S. (1990). The export of ideas from information science. Journal of information science, 16(6), 381-391.
    37. Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation and information science: Elsevier Science Publishers.
    38. Ernst, H. (2003). Patent information for strategic technology management. World patent information, 25(3), 233-242.
    39. Ernst&Young. (2017). Beyond borders Biotechnology report 2017. Retrieved from
    40. Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117-132.
    41. Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative capacity. Research policy, 31(6), 899-933.
    42. Griliches, Z. (1990). Patent statistics as economic indicators: 1990: National Bureau of Economic Research.
    43. Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and statistics, 81(3), 511-515.
    44. Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research policy, 32(8), 1343-1363.
    45. Harvey, D. (2018). The limits to capital: Verso books.
    46. Hashai, N., & Almor, T. (2008). R&D intensity, value appropriation and integration patterns within organizational boundaries. Research policy, 37(6-7), 1022-1034.
    47. Heirman, A., & Clarysse, B. (2007). Which tangible and intangible assets matter for innovation speed in start‐ups? Journal of Product Innovation Management, 24(4), 303-315.
    48. Jaffe, A. B., & De Rassenfosse, G. (2019). Patent citation data in social science research: Overview and best practices. Research handbook on the economics of intellectual property law.
    49. Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. the Quarterly journal of Economics, 108(3), 577-598.
    50. Katz, A. (1987). Measuring the demand for litigation: is the English rule really cheaper? Journal of Law, Economics, & Organization, 3(2), 143-176.
    51. Kortelainen, J. (2001). Applying modifiers to knowledge acquisition. Information Sciences, 134(1-4), 39-51.
    52. Lane, P. J., & Lubatkin, M. (1998). Relative absorptive capacity and interorganizational learning. Strategic management journal, 19(5), 461-477.
    53. Lanjouw, J. O., Pakes, A., & Putnam, J. (1998). How to count patents and value intellectual property: The uses of patent renewal and application data. The Journal of Industrial Economics, 46(4), 405-432.
    54. Lanjouw, J. O., & Schankerman, M. (1999). The quality of ideas: measuring innovation with multiple indicators. Retrieved from
    55. Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: a window on competition. RAND Journal of economics, 129-151.
    56. Lanjouw, J. O., & Schankerman, M. (2003). Enforcement of patent rights in the United States: Washington, DC: The National Academies Press.
    57. Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441-465.
    58. Lee, P.-C. (2019). Investigating the Knowledge Spillover and Externality of Technology Standards Based on Patent Data. IEEE Transactions on Engineering Management.
    59. Lee, P.-C. (2021). Investigating Long-Term Technological Competitiveness: Originality, Generality, and Longevity. IEEE Transactions on Engineering Management.
    60. Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., . . . Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427-441.
    61. Lerner, J. (1994). The importance of patent scope: an empirical analysis. The RAND Journal of Economics, 319-333.
    62. Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic management journal, 14(S2), 95-112.
    63. Lichtenberg, F. R., & De La Potterie, B. v. P. (1998). International R&D spillovers: a comment. European Economic Review, 42(8), 1483-1491.
    64. Mahoney, J. T., & Pandian, J. R. (1992). The resource‐based view within the conversation of strategic management. Strategic management journal, 13(5), 363-380.
    65. McEvily, S. K., & Chakravarthy, B. (2002). The persistence of knowledge‐based advantage: an empirical test for product performance and technological knowledge. Strategic management journal, 23(4), 285-305.
    66. Mowery, D. C., Sampat, B. N., & Ziedonis, A. A. (2002). Learning to patent: Institutional experience, learning, and the characteristics of US university patents after the Bayh-Dole Act, 1981-1992. Management Science, 48(1), 73-89.
    67. Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147-155.
    68. Narin, F. (1995). Patents as indicators for the evaluation of industrial research output. Scientometrics, 34(3), 489-496.
    69. Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research policy, 26(3), 317-330.
    70. Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2-4), 143-155.
    71. Nemet, G. F. (2012). Inter-technology knowledge spillovers for energy technologies. Energy Economics, 34(5), 1259-1270.
    72. OECD. (2001). BIOTECHNOLOGY, SINGLE DEFINITION. Retrieved from https://stats.oecd.org/glossary/detail.asp?ID=219
    73. Peteraf, M. A. (1993). The cornerstones of competitive advantage: a resource‐based view. Strategic management journal, 14(3), 179-191.
    74. Poppo, L., & Zenger, T. (1998). Testing alternative theories of the firm: transaction cost, knowledge‐based, and measurement explanations for make‐or‐buy decisions in information services. Strategic management journal, 19(9), 853-877.
    75. Porter, A., & Chubin, D. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3-4), 161-176.
    76. Putnam, J. D. (1997). The value of international patent rights.
    77. Ranft, A. L., & Lord, M. D. (2002). Acquiring new technologies and capabilities: A grounded model of acquisition implementation. Organization science, 13(4), 420-441.
    78. Reed, R., & DeFillippi, R. J. (1990). Causal ambiguity, barriers to imitation, and sustainable competitive advantage. Academy of management review, 15(1), 88-102.
    79. Ricardo, D. (1891). Principles of political economy and taxation: G. Bell and sons.
    80. Russo, E. (2003). Special Report: The birth of biotechnology. Nature, 421(6921), 456-457.
    81. Scherer, F. (1965). Firm size, market structure, opportunity, and the output of patented inventions. The American economic review, 55(5), 1097-1125.
    82. Scherer, F. (1984). Using linked patent and R&D data to measure interindustry technology flows. In R&D, patents, and productivity (pp. 417-464): University of Chicago Press.
    83. Scherer, F. (1986). Innovation and growth: Schumpeterian perspectives. MIT Press Books, 1.
    84. Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research policy, 39(8), 1051-1059.
    85. Silverberg, G., & Verspagen, B. (2007). The size distribution of innovations revisited: an application of extreme value statistics to citation and value measures of patent significance. Journal of Econometrics, 139(2), 318-339.
    86. Simonin, B. L. (1999). Ambiguity and the process of knowledge transfer in strategic alliances. Strategic management journal, 20(7), 595-623.
    87. Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 51(5), 756-770.
    88. Sorenson, O., Rivkin, J. W., & Fleming, L. (2006). Complexity, networks and knowledge flow. Research policy, 35(7), 994-1017.
    89. Squicciarini, M., Dernis, H., & Criscuolo, C. (2013). Measuring patent quality: indicators of technological and economic value. Paris: Organisation for Economic Cooperation and Development (OECD). 2013. In.
    90. Steele, T. W., & Stier, J. C. (2000). The impact of interdisciplinary research in the environmental sciences: a forestry case study. Journal of the American Society for Information Science, 51(5), 476-484.
    91. Su, H.-N. (2016). Dynamics of multi-national R&D: Evolving patterns in East Asia. Paper presented at the 2016 Portland International Conference on Management of Engineering and Technology (PICMET).
    92. Su, H.-N. (2017). Global interdependence of collaborative R&D-typology and association of international co-patenting. Sustainability, 9(4), 541.
    93. Su, H.-N., Chen, C. M.-L., & Lee, P.-C. (2012). Patent litigation precaution method: analyzing characteristics of US litigated and non-litigated patents from 1976 to 2010. Scientometrics, 92(1), 181-195.
    94. Tang, V., & Huang, B. (2002). Patent litigation as a leading market indicator. International Journal of Technology Transfer and Commercialisation, 1(3), 280-291.
    95. Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and new technology, 5(1), 19-50.
    96. Usher, A. P. (2013). A History of mechanical inventions: Revised edition: Courier Corporation.
    97. Van Wijk, R., Jansen, J. J., & Lyles, M. A. (2008). Inter‐and intra‐organizational knowledge transfer: a meta‐analytic review and assessment of its antecedents and consequences. Journal of management studies, 45(4), 830-853.
    98. Zhuge, H. (2002). A knowledge flow model for peer-to-peer team knowledge sharing and management. Expert systems with applications, 23(1), 23-30.
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    107364202
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107364202
    Data Type: thesis
    DOI: 10.6814/NCCU202101465
    Appears in Collections:[Graduate Institute of TIPM] Theses

    Files in This Item:

    File Description SizeFormat
    420201.pdf2031KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback