政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136925
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113303/144284 (79%)
造訪人次 : 50846095      線上人數 : 553
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136925


    題名: 人物與機構之知識圖譜分析工具發展與數位人文應用
    Development and Application of the Knowledge Graph Analysis Tool of Characters and Institutions on Digital Humanities
    作者: 林俊佑
    Lin, Chun-Yu
    貢獻者: 陳志銘
    Chen, Chih-Ming
    林俊佑
    Lin, Chun-Yu
    關鍵詞: 數位人文
    人物與機構關係
    知識圖譜
    文本探勘
    機器學習
    資訊視覺化
    滯後序列分析
    Digital Humanities
    Relationship between Characters and Institutions
    Knowledge Graph
    Text Mining
    Machine Learning
    Information Visualization
    Lag Sequence Analysis
    日期: 2021
    上傳時間: 2021-09-02 16:35:40 (UTC+8)
    摘要: 知識圖譜為語意上資料結構的一種,已被證實有助於數位資訊系統進行更有意義的知識表達,並且憑藉其動態鏈結與視覺化的特性,更有利於知識的引導與吸收。本研究旨在開發支援數位人文研究之「人物與機構之知識圖譜分析工具」,輔以人文學者透過知識圖譜功能的特性,不僅清楚看到人物與人物之間的關聯,更能透過人物與機構關係看到潛在於文本中的人物關係。為了驗證此一工具對於支援數位人文研究的效益,本研究以準實驗研究法之對抗平衡設計比較實驗對象依序使用有無「知識圖譜功能之人物與機構關係分析工具」進行文本人物與機構脈絡探索,在探索成效與效率上是否具有顯著的差異;並以科技接受度問卷、半結構訪談的方式瞭解實驗對象對「人物與機構之知識圖譜分析工具」的看法與感受;最後,透過滯後序列分析搭配螢幕錄影,探討實驗對象操作兩系統時的行為轉移差異。

    實驗結果發現,相較於採用「無知識圖譜功能之人物與機構關係分析工具」,採用「具知識圖譜功能之人物與機構關係分析工具」更能輔助受測對象在有限的時間內探索文本中的人物與機構關係,提高文本脈絡探索成效。在科技接受度分析得知,受測對象對於「具知識圖譜功能之人物與機構關係分析工具」持正面肯定態度,認為此工具的操作直觀且能幫助到他們進行文本人物與機構脈絡探索。此外,滯後序列分析結果發現,使用「具知識圖譜功能之人物與機構關係分析工具」的受測對象能在短時間內找到有系統性的探索模式,進而完成人物與機構脈絡探索表所賦予的任務。訪談內容分析得知大部分受測對象皆認為知識圖譜工具能做為探索人物與機構關係時很好的探索切入點,提高整體人物脈絡探索的成效與效率,但也有部分受測對象認為知識圖譜工具在一次觀看多位人物時,其圖上呈現的資訊量有點過多,認為知識圖譜呈現功能還有進一步改善空間。在未來研究方向上,可以考慮納入更多實體元素,舉凡地名、時間等充實知識圖譜,並且引入更多南洋人物誌或名人傳記文本充實平台內容。
    Knowledge graph is a kind of semantic data structure, which has been proved its benefits in promoting digital information system to carry out more meaningful knowledge representation, and by virtue of its dynamic link and visual characteristics, it is more conducive to knowledge guidance and absorption. This research aims to develop a Knowledge Graph Analysis Tool of Characters and Institutions (KGAT-CI) that can support digital humanities research more effectively. Knowledge graph in the KGAT-CI is provided for humanities scholars so that they not only clearly see the relationship between characters, but also view the potential character relationships through characters and institutional connection. In order to verify the effectiveness of this tool in supporting digital humanities research, a counterbalanced design in the quasi-experimental research was applied in this study to compare the experiment subjects of two groups who respectively used a character digital humanities research platform with and without KGAT-CI to explore the relationship between the two entities of character and institution, and if there were significant differences in the learning effectiveness and efficiency between the two groups. Technology acceptance questionnaire and semi-structured interview were utilized for understanding the experiment subjects’ opinions and perception toward KGAT-CI. Finally, lag sequential analysis and screen recording analysis were used for observing the experiment subjects’ behavior processes using two different systems to discuss whether the notable difference in the operation behavior transfer between the two groups existed.

    The experimental results show that the KGAT-CI could help the experiment subjects to improve the effectiveness of exploring the relationships between characters and institutions under limited time. The technology acceptance of the experiment subjects with KGAT-CI support reveals highly positive satisfaction. It presents that such a tool could help the experiment subjects explore the connections between characters and institutions. Besides, lag sequential analysis reveals that the experiment subjects who used KGAT-CI could rapidly generalize systematic patterns to explore the relationship between characters and institutions from texts in limited time. The interview reveals that most of the experimental subjects believed the knowledge graph can be a good entry point for exploring the relationship between characters and institutions, improve the effectiveness and efficiency of the overall character network exploration. However, some experimental subjects expressed that the KGAT-CI provides too much information when this tool was used to view multiple characters and institutions at a time. In the future research directions, it is able to including more physical elements, such as location, time, etc. to enrich the knowledge graph in the KGAT-CI, and import more Southeast Asia characters or celebrity biographies to enrich the character digital humanities research platform.
    參考文獻: 一、中文文獻
    王昊奮、漆桂林、陳華鈞、潘志霖(2020)。人工智慧的神殿 : AI知識圖譜實作。台北市 : 深智。
    王鳳翔、王軍(2020)。基於知識圖譜的《論語》視覺化系統設計與建構。「第十一屆數位典藏與樹為人文國際研討會」發表之論文,中央研究院數位文化中心。
    李岡原(2005)。馬來西亞華人宗教探析。浙江師範大學學抱 : 社會科學版 第一期。
    邱偉雲(2011)。關鍵詞叢與文本意義挖掘的嘗試:以《清季外交史料》為例。載於項潔(主編),數位人文在歷史學研究的應用,159-188。臺北市:國立臺灣大學出版中心。
    何啟良(2008)。馬來西亞華人人物志。拉曼大學中華研究中心。
    杜協昌(2018)。DocuSky 與文本字詞關聯圖的視覺化應用。「第九屆數位典藏與數位人文國際研討會」發表之論文,法鼓文理學院。
    金觀濤(2011)。數位人文研究的理論基礎。載於項潔(主編),數位人文研究的新視野:基礎與想像,43-61。臺北市:國立臺灣大學出版中心。
    洪麗芬(2005)。馬來西亞華人和語言。八桂僑刊 第四期。
    陳志明,李遠龍(1998)。馬來西亞華人的認同。廣西民族大學學報: 哲學社會科學版 第四期。
    陳淑君、王祥安、沈漢聰(2020)。鏈結資料與知識圖譜在數位博物館的應用。「第十一屆數位典藏與樹為人文國際研討會」發表之論文,中央研究院數位文化中心。
    項潔、涂豐恩(2011)。導論――什麼是數位人文。載於項潔(主編),從保存到創造: 開啟數位人文研究(9-28頁)。臺北市:國立臺灣大學出版中心。

    二、英文文獻
    Al- Khatib, K., Yufang, H., Henning, W., Charles, J., Francesca, B., & Benno, S. (2020). End-to-end argumentation knowledge graph construction. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 7367-7374. Retrieved from https://doi.org/10.1609/aaai.v34i05.6231
    Berners-Lee, T., James, H., & Ora, L. (2001). The semantic web. Scientific American.
    Bollacker, K., Cook, R., & Tufts, P. (2007). Freebase: A shared database of structured general human knowledge. AAAI2007: Proceedings of the 22nd National Conference on Artificial Intelligence, 1962-1963.
    Bradley, J. R., & Conway, R. W. (2003). Managing cyclic inventories. Production and Operations Management, 12(4), 464-479. Retrieved from https://doi.org/10.1111/j.1937-5956.2003.tb00215.x
    Carlyle, T. (1888). On heroes, hero-worship and the heroic in history, Fredrick A. stokes & brother, New York.
    Chen, C. M., Chang, C., & Chen, Y. T. (2020). A character social network relationship map tool to facilitate digital humanities research, Library Hi Tech. (SSCI)
    Clarke, I. (2000). Ancestor worship and identity: ritual, interpretation, and social normalization in the Malaysian Chinese community. Journal of Social Issues in Southeast Asia, 15, 273-95. Retrieved from https://www.jstor.org/stable/41057042
    DeBernardi, J. (2004). The localization of Chinese society in colonial penang. Rites of Belonging: Memory, Modernity, and Identity in a Malaysian Chinese Community, 15-26.
    Fisher, D., & Frey, N. (2012). Student and teacher perspectives on a close reading protocol. Literacy Research and Instruction, 53, 25-49. Retrieved from https://doi.org/10.1080/19388071.2013.818175
    George, A. M. (1995). WordNet: A lexical database for English. Communications of the ACM, 38 (11), 39-41.
    Gomez, E. T. (2012). Chinese business: culture, entrepreneurship or patronage?. Chinese Business in Malaysia: Accumulation, Accommodation and Ascendance, 1, 1-10. Retrieved from https://doi.org/10.4324/9780203036853
    Grandjean, P. (2016). Paracelsus revisited: The dose concept in a complex world. Basic & Clinical Pharmacology & Toxicology, 119(2), 126-132. Retrieved from https://doi.org/10.1111/bcpt.12622
    Haslhofer, B., Antoine, I., & Rainer, S. (2018). Knowledge graphs in the libraries and digital humanities domain. Retrieved from https://doi.org/10.1007/978-3-319-63962-8_291-1
    He, Y., Yun, H., & Lin, L. (2019). The character relationship mining based on knowledge graph and deep learning, 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), Qing Dao, China, 22-27. doi: 10.1109/BIGCOM.2019.00011
    Ho, H. I. B., & Hilde, D. W. (2014). MARKUS text analysis and reading platform. Retrieved from https://dh.chinese-empires.eu/markus/beta/
    Hockey, S. (2004). The history of humanities computing. In R. Siemens & S. Schreibman, (Eds.), A Companion to Digital Humanities. Retrieved from http://www.digitalhumanities.org/companion/
    Hook, S. (1995). The hero in history. A Study in Limitation and Possibility, Beacon Press, Boston.
    Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121-130.
    Hwang, J. C., & Sadiq, K. (2010). Legislating separation and solidarity in plural societies: The Chinese in Indonesia and Malaysia. Nationalism and Ethnic Politics, 16, 192-215. Retrieved from https://doi.org/10.1080/13537113.2010.490757
    Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2015). On close and distant reading in digital humanities, A Survey and Future Challenges, 21.
    Katrine, J. V. (2013). Ethics of Google’s knowledge graph: some considerations. Journal of Information, Communication and Ethics in Society, 11, 245-60. Retrieved from https://doi.org/10.1108/JICES-08-2013-0028
    Kirschenbaum, M. (2012). What is Digital Humanities and what’s it doing in English departments? Debates in the Digital Humanities, 3.
    Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning for named entity recognition. IEEE Transactions on Knowledge and Data Engineering. Retrieved from https://doi.org/10.1109/TKDE.2020.2981314
    McCarty, T. L., Borgoiakova, T., Gilmore, P., Lomawaima, K. T., & Romero, M. E. (2005). Indigenous epistemologies and education-self-determination, anthropology, and human rights. Anthropology & Education Quarterly, 36(1), 1-7. Retrieved from https://doi.org/10.1525/aeq.2005.36.1.001

    McDonough, K., Ludovic, M., & Matje, V. D. C. (2019). Named entity recognition goes to old regime France: geographic text analysis for early modern French corpora. International Journal of Geographical Information Science, 33, 2498-2522. Retrieved from https://doi.org/10.1080/13658816.2019.1620235
    Moretti, F. (2005). Graphs, Maps, Trees: Abstract Models for a Literary History. Verso, London and New York.
    Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S. (2016). ALCIDE: Extracting and visualising content from large document collections to support humanities studies. Knowledge-Based Systems, 111, 100-112.
    Nadeau, D., & Satoshi, S. (2007). A survey of named entity recognition and classification. Lingvisticæ Investigationes, 30, 3-26. Retrieved from https://doi.org/10.1075/li.30.1.03nad
    Navigli, R., & Ponzetto, S. (2012). BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artificial Intelligence, 193, 217-250.
    Noel, M. T., Michael, L. T & Charles, F. (1979). Social network analysis for organizations. Academy of Management Review, 4, 507-519.
    Pujara, J., Hui, M., Lise, G., & William, C. (2013). Knowledge graph identification. The Semantic Web-ISWC, 542-57. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. Retrieved from https://doi.org/10.1007/978-3-642-41335-3_34
    Roman, S. R., & Tan, Y. S. (2015). The development of Chinese education in Malaysia: problems and challenges. Yusof Ishak Institute, 2, 30.
    Rosenzweig, R. (2003). Scarcity or abundance? Preserving the past in a digital era. The American Historical Review, 108(3), 735-762.
    Schreibman, S., Siemens, R., & Unsworth, J. (2008). A companion to digital humanities. Retrieved from http://www.digitalhumanities.org/companion/
    Shen, Y., Ding, N., Zheng, H., Li, Y., & Yang, M. (2020). Modeling relation paths for knowledge graph completion. IEEE Transactions on Knowledge and Data Engineering. doi: 10.1109/TKDE.2020.2970044
    Singhal, A. (2012). Introducing the knowledge graph : Things, not string. Official Blog (of Google). Retrieved from https://blog.google/products/search/introducing-knowledge-graph-things-not/
    Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text classification? Chinese Computational Linguistics, 194-206. Retrieved from https://doi.org/10.1007/978-3-030-32381-3_16
    Zeng, M. L. (2019). Semantic enrichment for enhancing LAM data and supporting digital humanities. Review article. El Profesional de la Información, 28(1). Retrieved from https://doi.org/10.3145/epi.2019.ene.03
    描述: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    108155015
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108155015
    資料類型: thesis
    DOI: 10.6814/NCCU202101245
    顯示於類別:[圖書資訊與檔案學研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    501501.pdf3664KbAdobe PDF21檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋