Reference: | 中文部分:
1. 王春凱,馮鍵 (2020). "聯邦學習在保險行業的研究應用." 保險職業學院學報 第34 期: 13-17. 2. 周俊, et al. (2020). "聯邦學習安全与隱私保護研究綜述." 西華大學學報 (自然科學版) 39(4): 9-17. 3. 於建科 (2017). 反欺詐行業深度報告之一——金融反詐欺行業發展前景良好. 新三板-行業專題報告, 方正證券. 4. 邱鑫源, et al. (2021). "聯邦學習通信开销研究綜述." 计算机應用: 0-0. 5. 麥肯錫 (2019). 開放銀行的全球實踐與展望. 6. 微眾銀行人工智能部, et al. (2020). "聯邦學習白皮書 V2.0." from https://ai.webankcdn.net/scvm/html/1586314655296.html. 7. 譚樂之 (2019). "微眾銀行與瑞士再保險簽署合作備忘錄." from http://xw.sinoins.com/2019-05/22/content_292101.htm. 8. 蘇建明, et al. (2020). "聯邦學習在商業銀行反欺詐領域的應用." 中國金融電腦:39-42. 9. FedAI. "聯邦學習應用案例." from https://cn.fedai.org/cases. 10. 監督式學習與非監督式學習的差異、應用以及案例(2020)." from https://oosga.com/thinking/difference-between-supervised-learning-and-unsupervised-learning. 11. 何寶宏,覃敏.大數據須結束數據孤島[J].新世紀周刊,2013,(33):70-72.
英文部分:
1. Duan, M., et al. (2020). "Self-balancing federated learning with global imbalanced data in mobile systems." IEEE Transactions on Parallel and Distributed Systems 32(1): 59-71. 2. FinRegLab (2020). Federated Machine Learning in Anti-Financial Crime Processes, FinRegLab: 1-14. 3. Long, G., et al. (2020). Federated Learning for Open Banking. Federated Learning, Springer: 240-254. 4. Ryffel, T., et al. (2018). "A generic framework for privacy preserving deep learning." arXiv preprint arXiv:1811.04017. 5. Truex, S., et al. (2019). A hybrid approach to privacy-preserving federated learning. Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. 6. Yang, Q., et al. (2019). "Federated machine learning: Concept and applications." ACM Transactions on Intelligent Systems and Technology (TIST) 10(2): 1-19. 7. Wüst, K., & Gervais, A. (2018, June). Do you need a blockchain?. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT) (pp. 45-54). IEEE. 8. Gupta, S. S. (2017). Blockchain. IBM Onlone (http://www. IBM. COM). |