Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/136846
|
Title: | 基於深度學習+BERT與強化學習進行FAANG股價預測 FAANG stock prediction based on Deep learning +BERT and Reinforcement learning |
Authors: | 蔡政融 Tsai, Cheng-Jung |
Contributors: | 姜國輝 Chiang, Kuo-Huie 蔡政融 Tsai, Cheng-Jung |
Keywords: | 深度學習 強化學習 股票預測 FAANG BERT |
Date: | 2021 |
Issue Date: | 2021-09-02 15:54:38 (UTC+8) |
Abstract: | 在本研究中,我們想對金融商品進行預測,並且透過投資報酬率來探討兩種深度學習的方法孰優孰劣,同時我們也認為除了股票價格和交易量之外,技術指標和新聞情緒都是影響股票走勢的重要因素之一,因此,在最後的結果中我們也會與大盤ETF (Exchange Traded Funds) GSPC(追蹤S&P 500) 和 QQQ(追蹤內斯達克指數)進行比較,用以衡量模型。 首先我們從CNBC爬取五間公司(Facebook, Amazon, Apple, Netflix, Google)的新聞資料以及從yahoo股市中獲取2013年到2020年的股市資訊,再來使用BERT衡量新聞情緒,這裡將它定義為三種情緒(負面、中立、正面),並透過加權平均獲得一天的情緒指標,為了有更多的特徵資料量,實驗中也加入技術指標如MACD ( Moving Average Directional Index ), RSI ( Relative Strength Index )等。接著,比較深度學習模型LSTM (Short Term Memory Networks)、GRU (Gated Recurrent Unit Network)和PPO (Proximal Policy Optimization)深度強化學習模型,在這五支股票中的表現。 從本實驗中實證分析,可以得到以下結果 : 從2018年6月25日到2020年12月31日期間,若直接投資S&P 500 指數,平均年化報酬率為15.56%,若是直接投資Dow Jones 指數,平均年化報酬率為9.39%,若是直接投資Nasdaq 指數,平均年化報酬率為27.94%,而透過直接持有FAANG,平均年化報酬率為24.39%。 透過強化學習策略對上述四個標的投資平均年化報酬率為投資S&P 500 指數平均年化報酬率為28.05%,投資Dow Jones 平均年化報酬率為13.49%,投資Nasdaq 指數 平均年化報酬率為32.36%,投資FAANG 平均年化報酬率為25.57%。 |
Reference: | References 1. the economics of big tech (2019) Wikipedia. Available at: https://zh.wikipedia.org/wiki/Bigtech 2. the quantitative trading (2014) baike.baidu. Available at: https://baike.baidu.com/item/quantitativetrading/5266581 3. the original of FinBert(2020)Available at: https://zhuanlan.zhihu.com/p/368795160 4. William F. Sharpe (1994) : The Sharpe Ratio 5. Filippo Petroni, Giulia Rotundo : Effectiveness of measures of performance during speculative bubbles (2007) 6. Hadi S. Jomaa1, Josif Grabocka1, and Lars Schmidt-Thieme1 Hyp-RL : Hyperparameter Optimization by Reinforcement Learning (2019) 7. Bergstra,J.,Bengio,Y.:Random search for hyper parameter optimization. Journal of Machine Learning Research 13(Feb), 281–305 (2012) 8. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1), 148–175 (2016) 9. Xu, Z., van Hasselt, H.P., Silver, D.: Meta-gradient reinforcement learning. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montr ́eal, Canada. pp. 2402–2413 (2018) 10. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: Attention Is All You Need (2017) 11. Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018) 12. Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, Anwar Walid: Practical Deep Reinforcement Learning Approach for Stock Trading(2018) |
Description: | 碩士 國立政治大學 資訊管理學系 108356023 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108356023 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202101247 |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
602301.pdf | | 4616Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|