政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136844
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51060092      線上人數 : 928
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/136844
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136844


    題名: 以模擬退火法建構資本資產模型的獲利風險最佳化研究-以 0050 指數型 50 檔股票為例
    Research into Optimization of Profit with Hedging for Stock Investment by Constructing Capital Asset Model with Simulated Annealing Method- with Example of 50 Stocks of 0050
    作者: 林宜萱
    Lin, Yi-Hsuan
    貢獻者: 姜國輝
    Chiang, Kuo-Huie
    林宜萱
    Lin, Yi-Hsuan
    關鍵詞: 模擬退火法
    波茲曼機器
    夏普比率
    風險最佳化
    股票
    Simulated Annealing
    Boltzmann Machine
    Sharpe Ratio
    Optimization of Profit
    Stocks
    日期: 2021
    上傳時間: 2021-09-02 15:53:52 (UTC+8)
    摘要: Markowitz 所提出之投資組合選擇問題須面臨計算工作繁重且高度複雜的最佳化組合問題,如何在所選擇投資之資產分配最佳資金權重,使所建構之投資組合符合效用前緣線。本研究以股票市場為例,期望在股票市場中尋找風險最小且報酬率最大之資產投資組合並給予較高的資金權重。基於此理由,選擇夏普比率 (Sharpe Ratio) 當作投資組合的選擇策略,夏普比率是利用報酬率除以標準差去衡量承受風險的單位報酬率之大小。
    其次,本研究再利用霍普菲爾類神經網路 (Hopfield-Tank Neural Network) 結合波茲曼機器 (Boltzmann Machine) 優良的權重學習能力求解最佳投資組合問題。在退火程序中,溫度很高時,系統往高能量方向移動和往低能量方向移動的機率就愈來愈大;當溫度降低時,波茲曼機器則應用神經元狀態改變所造成的能量差 ΔΕ 概念,根據 ΔΕ 和溫度值給定的機率,當溫度高時不管 ΔΕ > 0 或 ΔΕ < 0,即不管能量是往上升或往下降,狀態改變的接受率大約相同,當溫度愈來愈低時,會使得 ΔΕ < 0 狀態被接受的機率愈來愈大。因此,波茲曼機器擁有跳脫局部最佳解 (Local Optimum) ,往全域最佳解 (Global Optimum) 方向移動的能力。
    本研究期望以模擬退火法建構夏普比率最大化並符合效益前緣的股票投資組合。
    The investment portfolio selection problem proposed by Markowitz has to face the intensive and highly complex optimal portfolio problem. How to allocate the best capital weight to the selected investment assets in order to make the constructed investment portfolio meets the efficient frontier is the problem. This thesis takes the stock market as an example, hoping to find the asset portfolio with the lowest risk and the highest return rate in the stock market and give it a higher capital weight. For this reason, Sharpe Ratio is chosen as the investment portfolio selection strategy which uses the rate of return divided by the standard deviation to measure the rate of return per unit of risk.
    Secondly, this research reuses Hopfield-Tank Neural Network and excellent weight learning ability of Boltzmann Machine to solve the optimal portfolio problem. During the process, if the temperature is high, the probability of the system moving to high energy or low energy becomes greater; if the temperature decreases, Boltzmann Machine applies the concept of energy difference ΔΕ caused by the change of neuron state. According to the probability given by ΔΕ and temperature, when the temperature is high, regardless of ΔΕ > 0 or ΔΕ < 0, that is, regardless of whether the energy is rising or falling, the accepted probability of the changing state is about the same. When the temperature is getting lower, the accepted probability of ΔΕ<0 is getting higher. Therefore, Boltzmann Machine has the ability to escape the local optimum and move towards the global optimum.
    This research expects to construct a stock portfolio that maximizes Sharpe Ratio and meets the efficient frontier with Simulated Annealing Method.
    參考文獻: 1. 林向愷、楊適予(2008)。財務管理:理論與實務(初版)。台灣:新陸書局。
    2. 張德丰(2012)。MATLAB神經網絡應用設計(第2版)。中國:機械工業出版社。
    3. 鄒忠毅、李世炳(2002)。簡介導引模擬退火法及其應用。物理雙月刊。24(2),307-319。
    4. 鄒忠毅、李定國(2003)。最佳化運用在計算生物學。中央研究院學術諮詢總會通訊。13(1),72-76。
    5. 葉怡成(2009)。類神經網路模式應用與實作(初版)。台灣:儒林出版社。
    6. 陳慶瀚(2006)。退火式神經網路,2021 年 7 月 27 日,取自:http://ccy.dd.ncu.edu.tw/~chen/course/Neural/index.htm。
    7. 謝劍平(2014)。現代投資銀行 Investment Banking: In Greater China(第4版)。台灣:智勝出版社。
    8. Ajay Raina, & C. Mukhopadhyay. (2004). Optimizing a Portfolio of Equities, Equity Futures and Equity European Options by Minimizing Value-at-Risk - a Simulated Annealing Framework. The ICFAI Journal of APPLIED FINANCE, 10(5), 19-39.
    9. Andre F. Perold, & Kenneth A. Froot. (2008). Measuring Investment Performance. Retrieved July 27, 2021, from https://hbsp.harvard.edu/product/208110-PDF-ENG.
    10. Armananzas, R., & Lozano, J.A. (2005). A multiobjective approach to the portfolio optimization problem. The Congress on Evolutionary Computation, 2(5), 1388-1395.
    11. Chou, C. I., Han, R. S., Li, S. P., & Lee, T. K. (2003). Guided simulated annealing method for optimization problems. Phys. Rev., 67(066704).
    12. Chung-Chain Lai. (2010). Simulated annealing in multifactor equity portfolio management. International MultiConference of Engineers and Computer Scientists (IMECS), 3, 2092-2097.
    13. Curtis Faith. (2007). Way of the Turtle: The Secret Methods that Turned Ordinary People into Legendary Traders (1st Ed.). United States: McGraw-Hill.
    14. D. E. Van den Bout, & T. K. Miller. (1989). Improving the performance of the Hopfield-Tank neural network through normalization and annealing. Biological Cybernetics, 62(2), 129-139.
    15. David H. Ackley, Geoffrey E. Hinton, & Terrence J. Sejnowski. (1985). A learning algorithm for Boltzmann Machines. Cognitive Science, 9(1), 147-169.
    16. J.J. Hopfield, & D.W. Tank. (1985). Neural Computation of Decisions in Optimization Problems. Biological Cybernetics, 52(3), 141-152.
    17. Jingjing Lu, & Merrill Liechty. (2007). An empirical comparison between nonlinear programming optimization and simulated annealing (SA) algorithm under a higher moments Bayesian portfolio selection framework. 2007 Winter conference simulation, 1021-1027.
    18. John C. Hull. (2002). Options, Futures and Other Derivatives (4th Ed.). United States: Prentice Hall.
    19. Markowitz, H. M. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91.
    20. Nate Schmidt. (2010). Simulated Annealing. Retrieved July 27, 2021, from http://personal.denison.edu/~havill/272S04/papers/simulated_annealing.pdf.
    21. Reto Gallati. (2003). 15.433 Investments Lecture 6: The CAPM and APT Part 1: Theory. Retrieved July 27, 2021, from http://core.csu.edu.cn/NR/rdonlyres/Sloan-School-of-Management/15-433InvestmentsSpring2003/090E1B17-E442-41DB-8355-98A065059021/0/154336capm1.pdf.
    22. Reto Gallati. (2003). 15.433 Investments Lecture 7: Applications and Tests. Retrieved July 27, 2021, from http://core.csu.edu.cn/NR/rdonlyres/Sloan-School-of-Management/15-433InvestmentsSpring2003/ADA3E7B7-C053-4300-936E-3D6ACF342ECE/0/154337capm2.pdf.
    23. S. Kirkpatrick, C. D. Gelatt, & M. P. Vecchi. (1983). Optimization by Simulated Annealing. Science Volume, 220(4598), 671-680.
    24. S. Kirkpatrick. (1984). Optimization by Simulated Annealing: Quantitative Studies. Journal of Statistical Physics, 34, 975-986.
    25. Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19(3), 425-442.
    26. Simon C. Lin, & James H.C. Hsueh. (1994). A new methodology of simulated annealing for the optimisation problems. Physical A: Statistical Mechanics and its Applications, 205(1-3), 367-374.
    27. Simon Haykin. (1994). Neural networks: A comprehensive foundation. United States: Prentice Hall.
    28. Y. Crama, & M. Schyns. (2003). Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150(3), 546-571.
    29. Zhao Xinchao. (2010). Simulated annealing algorithm adaptive neighborhood. Applied Soft Computing, 11(2), 1827-1836.
    描述: 碩士
    國立政治大學
    資訊管理學系
    108356019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108356019
    資料類型: thesis
    DOI: 10.6814/NCCU202101169
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    601901.pdf1771KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋