Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/136844
|
Title: | 以模擬退火法建構資本資產模型的獲利風險最佳化研究-以 0050 指數型 50 檔股票為例 Research into Optimization of Profit with Hedging for Stock Investment by Constructing Capital Asset Model with Simulated Annealing Method- with Example of 50 Stocks of 0050 |
Authors: | 林宜萱 Lin, Yi-Hsuan |
Contributors: | 姜國輝 Chiang, Kuo-Huie 林宜萱 Lin, Yi-Hsuan |
Keywords: | 模擬退火法 波茲曼機器 夏普比率 風險最佳化 股票 Simulated Annealing Boltzmann Machine Sharpe Ratio Optimization of Profit Stocks |
Date: | 2021 |
Issue Date: | 2021-09-02 15:53:52 (UTC+8) |
Abstract: | Markowitz 所提出之投資組合選擇問題須面臨計算工作繁重且高度複雜的最佳化組合問題,如何在所選擇投資之資產分配最佳資金權重,使所建構之投資組合符合效用前緣線。本研究以股票市場為例,期望在股票市場中尋找風險最小且報酬率最大之資產投資組合並給予較高的資金權重。基於此理由,選擇夏普比率 (Sharpe Ratio) 當作投資組合的選擇策略,夏普比率是利用報酬率除以標準差去衡量承受風險的單位報酬率之大小。 其次,本研究再利用霍普菲爾類神經網路 (Hopfield-Tank Neural Network) 結合波茲曼機器 (Boltzmann Machine) 優良的權重學習能力求解最佳投資組合問題。在退火程序中,溫度很高時,系統往高能量方向移動和往低能量方向移動的機率就愈來愈大;當溫度降低時,波茲曼機器則應用神經元狀態改變所造成的能量差 ΔΕ 概念,根據 ΔΕ 和溫度值給定的機率,當溫度高時不管 ΔΕ > 0 或 ΔΕ < 0,即不管能量是往上升或往下降,狀態改變的接受率大約相同,當溫度愈來愈低時,會使得 ΔΕ < 0 狀態被接受的機率愈來愈大。因此,波茲曼機器擁有跳脫局部最佳解 (Local Optimum) ,往全域最佳解 (Global Optimum) 方向移動的能力。 本研究期望以模擬退火法建構夏普比率最大化並符合效益前緣的股票投資組合。 The investment portfolio selection problem proposed by Markowitz has to face the intensive and highly complex optimal portfolio problem. How to allocate the best capital weight to the selected investment assets in order to make the constructed investment portfolio meets the efficient frontier is the problem. This thesis takes the stock market as an example, hoping to find the asset portfolio with the lowest risk and the highest return rate in the stock market and give it a higher capital weight. For this reason, Sharpe Ratio is chosen as the investment portfolio selection strategy which uses the rate of return divided by the standard deviation to measure the rate of return per unit of risk. Secondly, this research reuses Hopfield-Tank Neural Network and excellent weight learning ability of Boltzmann Machine to solve the optimal portfolio problem. During the process, if the temperature is high, the probability of the system moving to high energy or low energy becomes greater; if the temperature decreases, Boltzmann Machine applies the concept of energy difference ΔΕ caused by the change of neuron state. According to the probability given by ΔΕ and temperature, when the temperature is high, regardless of ΔΕ > 0 or ΔΕ < 0, that is, regardless of whether the energy is rising or falling, the accepted probability of the changing state is about the same. When the temperature is getting lower, the accepted probability of ΔΕ<0 is getting higher. Therefore, Boltzmann Machine has the ability to escape the local optimum and move towards the global optimum. This research expects to construct a stock portfolio that maximizes Sharpe Ratio and meets the efficient frontier with Simulated Annealing Method. |
Reference: | 1. 林向愷、楊適予(2008)。財務管理:理論與實務(初版)。台灣:新陸書局。 2. 張德丰(2012)。MATLAB神經網絡應用設計(第2版)。中國:機械工業出版社。 3. 鄒忠毅、李世炳(2002)。簡介導引模擬退火法及其應用。物理雙月刊。24(2),307-319。 4. 鄒忠毅、李定國(2003)。最佳化運用在計算生物學。中央研究院學術諮詢總會通訊。13(1),72-76。 5. 葉怡成(2009)。類神經網路模式應用與實作(初版)。台灣:儒林出版社。 6. 陳慶瀚(2006)。退火式神經網路,2021 年 7 月 27 日,取自:http://ccy.dd.ncu.edu.tw/~chen/course/Neural/index.htm。 7. 謝劍平(2014)。現代投資銀行 Investment Banking: In Greater China(第4版)。台灣:智勝出版社。 8. Ajay Raina, & C. Mukhopadhyay. (2004). Optimizing a Portfolio of Equities, Equity Futures and Equity European Options by Minimizing Value-at-Risk - a Simulated Annealing Framework. The ICFAI Journal of APPLIED FINANCE, 10(5), 19-39. 9. Andre F. Perold, & Kenneth A. Froot. (2008). Measuring Investment Performance. Retrieved July 27, 2021, from https://hbsp.harvard.edu/product/208110-PDF-ENG. 10. Armananzas, R., & Lozano, J.A. (2005). A multiobjective approach to the portfolio optimization problem. The Congress on Evolutionary Computation, 2(5), 1388-1395. 11. Chou, C. I., Han, R. S., Li, S. P., & Lee, T. K. (2003). Guided simulated annealing method for optimization problems. Phys. Rev., 67(066704). 12. Chung-Chain Lai. (2010). Simulated annealing in multifactor equity portfolio management. International MultiConference of Engineers and Computer Scientists (IMECS), 3, 2092-2097. 13. Curtis Faith. (2007). Way of the Turtle: The Secret Methods that Turned Ordinary People into Legendary Traders (1st Ed.). United States: McGraw-Hill. 14. D. E. Van den Bout, & T. K. Miller. (1989). Improving the performance of the Hopfield-Tank neural network through normalization and annealing. Biological Cybernetics, 62(2), 129-139. 15. David H. Ackley, Geoffrey E. Hinton, & Terrence J. Sejnowski. (1985). A learning algorithm for Boltzmann Machines. Cognitive Science, 9(1), 147-169. 16. J.J. Hopfield, & D.W. Tank. (1985). Neural Computation of Decisions in Optimization Problems. Biological Cybernetics, 52(3), 141-152. 17. Jingjing Lu, & Merrill Liechty. (2007). An empirical comparison between nonlinear programming optimization and simulated annealing (SA) algorithm under a higher moments Bayesian portfolio selection framework. 2007 Winter conference simulation, 1021-1027. 18. John C. Hull. (2002). Options, Futures and Other Derivatives (4th Ed.). United States: Prentice Hall. 19. Markowitz, H. M. (1952). Portfolio Selection. Journal of Finance, 7(1), 77-91. 20. Nate Schmidt. (2010). Simulated Annealing. Retrieved July 27, 2021, from http://personal.denison.edu/~havill/272S04/papers/simulated_annealing.pdf. 21. Reto Gallati. (2003). 15.433 Investments Lecture 6: The CAPM and APT Part 1: Theory. Retrieved July 27, 2021, from http://core.csu.edu.cn/NR/rdonlyres/Sloan-School-of-Management/15-433InvestmentsSpring2003/090E1B17-E442-41DB-8355-98A065059021/0/154336capm1.pdf. 22. Reto Gallati. (2003). 15.433 Investments Lecture 7: Applications and Tests. Retrieved July 27, 2021, from http://core.csu.edu.cn/NR/rdonlyres/Sloan-School-of-Management/15-433InvestmentsSpring2003/ADA3E7B7-C053-4300-936E-3D6ACF342ECE/0/154337capm2.pdf. 23. S. Kirkpatrick, C. D. Gelatt, & M. P. Vecchi. (1983). Optimization by Simulated Annealing. Science Volume, 220(4598), 671-680. 24. S. Kirkpatrick. (1984). Optimization by Simulated Annealing: Quantitative Studies. Journal of Statistical Physics, 34, 975-986. 25. Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19(3), 425-442. 26. Simon C. Lin, & James H.C. Hsueh. (1994). A new methodology of simulated annealing for the optimisation problems. Physical A: Statistical Mechanics and its Applications, 205(1-3), 367-374. 27. Simon Haykin. (1994). Neural networks: A comprehensive foundation. United States: Prentice Hall. 28. Y. Crama, & M. Schyns. (2003). Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150(3), 546-571. 29. Zhao Xinchao. (2010). Simulated annealing algorithm adaptive neighborhood. Applied Soft Computing, 11(2), 1827-1836. |
Description: | 碩士 國立政治大學 資訊管理學系 108356019 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108356019 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202101169 |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
601901.pdf | | 1771Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|