政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136840
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51098438      Online Users : 950
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/136840
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136840


    Title: 假新聞研究趨勢及書目計量學分析
    Fake News: Research Trends and A Bibliometric Analysis
    Authors: 郭庭瑋
    Kuo, Ting-Wei
    Contributors: 梁定澎
    彭志宏

    Liang, Ting-Peng
    Peng, Chih-Hung

    郭庭瑋
    Kuo, Ting-Wei
    Keywords: 假新聞
    書目計量學
    系統性分析
    趨勢
    學門
    Fake News
    Bibliometric Analysis
    System Analysis
    Trends
    Discipline
    Date: 2021
    Issue Date: 2021-09-02 15:48:47 (UTC+8)
    Abstract: 假新聞(fake news)一詞在2016年美國總統大選後被大家廣為使用,人們自從劍橋分析事件(Cambridge Analytica)之後開始逐漸重視假新聞所帶來的危害,2019年底遭逢COVID-19開始在全球肆虐,關於此疾病的假新聞大量的出現在各個媒體上,也使得假新聞進入了另一個高峰期。
    假新聞的研究主題有很多,目前僅有部分學者針對特定的主題做小範圍的分析,尚未有學者針對所有類型的文獻一個較有統整性的整理,因此本研究透過蒐集在Web of Science上蒐集假新聞的相關文獻,並透過書目計量學分析(Bibliometric Analysis),去探討這些文獻,本研究以書目計量的輔助軟體(VOSviewer)完成相關的分析,透過作者給予文獻的關鍵字去了解目前的研究趨勢,並且將這些結果可視化,本研究也將蒐集而來的文獻進行學門的分群,對於不同學門的文獻內容做了進一步的分析,在最後也提出了了解假新聞研究領域閱讀文獻的推薦順序,供後續的研究人員作參考。
    The phrase “fake news” has become popular in the wake of the United States presidential election of 2016. People became concerned about the dangers that could be caused by fake news ever since the Cambridge Analytica scandal. During the COVID-19 outbreak at the end of 2019, fake news about the disease rapidly spread across various media outlets, leading to a new peak in fake news.
    There are many studies on fake news. In the current studies, researchers have only analyzed certain topics on a small scale, so this study set out to analyze all types of sources. This study collected studies about fake news from a website called Web of Science (WOS), and this study used bibliometric analysis to analyze the research. This study used a software called VOSviewer to help us complete the bibliometric analysis, recognize the research trends via author keywords, and visualize the results. This study also sorted the studies by research areas and analyzed them. Lastly, this study proposed a reading sequence for the studies for future researchers.
    Reference: 汪志堅、陳才(民108)。假新聞來源、樣態與因應策略。新北市:前程文化。
    Albright, J. (2017). Welcome to the Era of Fake News [Editorial Material]. Media and Communication, 5(2), 87-89.
    Allcott, H., & Gentzkow, M. (2017). Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, 31(2), 211-236.
    Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data analytics for business and management. Management Decision, 57(8), 1993-2009.
    Chen, A. (2017). “The Fake-News Fallacy.” The New Yorker, September 5. https://www.newyorker.com/magazine/2017/09/04/the-fake-news-fallacy?utm_content=bufferfc8ed&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
    Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(suppl 1), 5303.
    Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377.
    Constine, J., & Hatmaker, T. (2018). Facebook admits Cambridge Analytica hijacked data on up to 87 m users. TechCrunch. Retrieved from https://techcrunch.com/2018/04/04/cambridge-analytica-87-million/
    Corner, J. (2017). Fake news, post-truth and media–political change. Media, Culture & Society, 39(7), 1100–1107.
    Edson C. Tandoc Jr., Zheng Wei Lim & Richard Ling (2018) Defining “Fake News”, Digital Journalism, 6:2, 137-153, DOI: 10.1080/21670811.2017.1360143
    Ghanem, B., Rosso, P., & Rangel, F. (2020). An Emotional Analysis of False Information in Social Media and News Articles [Article]. Acm Transactions on Internet Technology, 20(2), 18, Article 19. https://doi.org/10.1145/3381750
    Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election [Article]. Science, 363(6425), 374-+. https://doi.org/10.1126/science.aau2706
    Guess, A., Nagler, J., & Tucker, J. (2019). Less than you think: Prevalence and predictors of fake news dissemination on Facebook [Article]. Science Advances, 5(1), 8, Article eaau4586. https://doi.org/10.1126/sciadv.aau4586
    Hartley, J. (1996). Popular Reality: Journalism, Modernity, Popular Culture.
    Hermida, A. (2010). Twittering the news. Journalism Practice, 4, 297-308. https://doi.org/10.1080/17512781003640703
    Hermida, A. (2011). Fluid Spaces, Fluid Journalism. In Participatory Journalism (eds J.B. Singer, A. Hermida, D. Domingo, A. Heinonen, S. Paulussen, T. Quandt, Z. Reich and M. Vujnovic). https://doi.org/10.1002/9781444340747.ch10
    Howard, P. N., & Kollanyi, B. (2016). Bots, #StrongerIn, and #Brexit: ComputationalPropaganda during the UK-EU Referendum. arXiv:1606.06356 [Physics].Retrieved from http://arxiv.org/abs/1606.06356
    Hunt, K., Agarwal, P., & Zhuang, J. Monitoring Misinformation on Twitter During Crisis Events: A Machine Learning Approach [Article; Early Access]. Risk Analysis, 21. https://doi.org/10.1111/risa.13634
    Jewitt, R. (2009). The trouble with twittering: integrating social media into mainstream news. International Journal of Media and Cultural Politics, 5 (3). pp. 231-238.
    Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five Steps to Conducting a Systematic Review. Journal of the Royal Society of Medicine, 96(3), 118–121.
    Kiernan, L. (2017). “‘Frondeurs’ and fake news: how misinformation ruled in 17th-century France.” The Local, August 15. https://www.thelocal.fr/20170815/frondeurs-and-fakenews-how-misinformation-ruled-in-17th-century-france.
    Ripoll, L., & Matos, J. (2020). Information reliability: criteria to identify misinformation in the digital environment. Investigación Bibliotecológica: archivonomía, bibliotecología e información, 34, 79.
    Robinson, S., & DeShano, C. (2011). ‘Anyone can know’: Citizen journalism and the interpretive community of the mainstream press. Journalism, 12(8), 963–982. https://doi.org/10.1177/1464884911415973
    Sippitt, A., & Moy, W. (2020). Fact Checking is About What we Change not Just Who we Reach [Article]. Political Quarterly, 91(3), 592-595. https://doi.org/10.1111/1467-923x.12898
    Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). DEFINING "FAKE NEWS" A typology of scholarly definitions [Article]. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
    The Onion. (2017c). “Tearful Biden Carefully Takes Down Blacklight Poster of Topless Barbarian Chick From Office Wall.” The Onion 53 (2). https://www.theonion.com/article/tearfulbiden-carefully-takes-down-blacklight-post-55089.
    van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538.
    van Eck, N. J., Waltman, L., Dekker, R., & van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405-2416.
    van Eck, N. J., Waltman, L., Noyons, E. C. M., & Buter, R. K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581-596.
    Wang, M., Rao, M. K., & Sun, Z. P. Typology, Etiology, and Fact-Checking: A Pathological Study of Top Fake News in China [Article; Early Access]. Journalism Practice, 19. https://doi.org/10.1080/17512786.2020.1806723
    Wang, Y. X., McKee, M., Torbica, A., & Stuckler, D. (2019). Systematic Literature Review on the Spread of Health-related Misinformation on Social Media [Review]. Social Science & Medicine, 240, 12, Article 112552. https://doi.org/10.1016/j.socscimed.2019.112552
    Wardle, C. (2017). “Fake News.” It’s Complicated. https://medium.com/1st-draft/fake-newsits-complicated-d0f773766c79.
    Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472.
    Description: 碩士
    國立政治大學
    資訊管理學系
    108356001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108356001
    Data Type: thesis
    DOI: 10.6814/NCCU202101434
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File Description SizeFormat
    600101.pdf5700KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback