政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136774
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114609/145646 (79%)
造訪人次 : 53750416      線上人數 : 753
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 心理學系 > 期刊論文 >  Item 140.119/136774
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136774


    題名: lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likelihood
    作者: 黃柏僩
    Huang, Po-Hsien
    貢獻者: 心理系
    日期: 2020-04
    上傳時間: 2021-08-10 16:44:37 (UTC+8)
    摘要: Sparse estimation via penalized likelihood (PL) is now a popular approach to learn the associations among a large set of variables. This paper describes an R package called lslx that implements PL methods for semi-confirmatory structural equation modeling (SEM). In this semi-confirmatory approach, each model parameter can be specified as free/fixed for theory testing, or penalized for exploration. By incorporating either a L1 or minimax concave penalty, the sparsity pattern of the parameter matrix can be efficiently explored. Package lslx minimizes the PL criterion through a quasi-Newton method. The algorithm conducts line search and checks the first-order condition in each iteration to ensure the optimality of the obtained solution. A numerical comparison between competing packages shows that lslx can reliably find PL estimates with the least time. The current package also supports other advanced functionalities, including a two-stage method with auxiliary variables for missing data handling and a reparameterized multi-group SEM to explore population heterogeneity.
    關聯: Journal of Statistical Software, Vol.93, No.7, pp.1851
    資料類型: article
    DOI 連結: https://doi.org/10.18637/jss.v093.i07
    DOI: 10.18637/jss.v093.i07
    顯示於類別:[心理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    6.pdf676KbAdobe PDF2314檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋