English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52408780      Online Users : 361
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136559


    Title: 深度強化學習之模型比較: 以股票自動交易系統為例
    A Comparison of Deep Reinforcement Learning Models: The Case of Stock Automated Trading System
    Authors: 黃瑜萍
    Huang, Yu-Ping
    Contributors: 蔡炎龍
    蕭明福

    Tsai, Yen-Lung
    Shaw, Ming-Fu

    黃瑜萍
    Huang, Yu-Ping
    Keywords: 深度學習
    強化學習
    深度 Q 學習
    匯率
    股票交易
    Deep learning
    Reinforcement learning
    Deep Q learning
    Exchange rate
    Stock trading
    Date: 2021
    Issue Date: 2021-08-04 15:58:49 (UTC+8)
    Abstract: 本研究引入深度 Q 學習方法,建構一個自動化股票交易系統,研究範圍包含台灣股票市場 14 家科技業公司。研究期間為 2016 年 1 月 4 日至 2020年 12 月 31 日。本研究數據資料有兩種型態 (1) 股票資訊,(2) 股票資訊加上匯率參數。我們將深度 Q 學習的模型,與不同模型和其他策略相比較,以檢測深度 Q 學習是否更適用於股票交易。實證結果發現支持向量機與神經網路在實務面上難以進行股票交易操作,而深度 Q 學習的模型則具有相對好的成效。尤其,加入匯率參數的深度 Q 學習,獲得的報酬皆優於買入持有策略和台灣加權股價指數。
    This research introduces the Deep Q learning model to construct an automated stock trading system. Our samples are 14 Taiwanese technology companies. Specifically, we include two types of data, (1) stock information and (2) stock information and exchange rate parameters, which are collected from the Taiwan stock market. The sampling period is from Jan 4, 2016 to Dec 31, 2020. We compare our main model, Deep Q learning, with different models and strategies to examine whether Deep Q learning is more applicable to stock trading. The empirical results show that it is difficult for Support vector machines and Neural networks to operate stock trading; however, Deep Q learning demonstrates better performance. In particular, the return rate of the Deep Q learning model is higher than the Buy-and-hold strategy and Taiwan Weighted Stock Index if considering exchange rate parameters.
    Reference: 王泓仁. 台幣匯率對我國經濟金融活動之影響. 中央銀行季刊》,(),–, Wang, Hung-Jen (),“e Impacts of NT Dollar Exchange Rates on Taiwan's Economy", Quarterly Reviews, Central Bank of the Republic of China (Taiwan),(), 2005.

    徐千婷. 匯率與總體經濟變數之關係: 台灣實證分析, 2006.

    Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one, 12(7):e0180944, 2017.

    Alessio Brini and Daniele Tantari. Deep reinforcement trading with predictable returns. arXiv preprint arXiv:2104.14683, 2021.

    Arthur Charpentier, Romuald Elie, and Carl Remlinger.
    Reinforcement learning in economics and finance. Computational Economics, pages 1–38, 2021.

    Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3): 273–297, 1995.

    Li Deng and Dong Yu. Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4):197–387, 2014.

    Eugene F Fama. The behavior of stock-market prices. The journal of Business, 38(1): 34–105, 1965.

    Eugene F Fama. Random walks in stock market prices. Financial analysts journal, 51(1): 75–80, 1995.

    Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press Cambridge, 2016.

    Chien Yi Huang. Financial trading as a game: A deep reinforcement learning approach. arXiv preprint arXiv:1807.02787, 2018.

    Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

    Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V Karamouzis, and Dimitrios I Fotiadis. Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal, 13:8–17, 2015.

    Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553): 436–444, 2015.

    Jae Won Lee. Stock price prediction using reinforcement learning. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), volume 1, pages 690–695. IEEE, 2001.

    Jae Won Lee, Jonghun Park, O Jangmin, Jongwoo Lee, and Euyseok Hong. A multiagent
    approach to q-learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(6):864–877, 2007.

    Pierre Menard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momentum q-learning: Correcting the bias without forgetting. arXiv preprint arXiv: 2103.01312, 2021.

    Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

    Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv: 1507.04296, 2015.

    Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multimodal deep learning. In ICML, 2011.

    Kate Phylaktis and Fabiola Ravazzolo. Stock prices and exchange rate dynamics. Journal of international Money and Finance, 24(7):1031–1053, 2005.

    G William Schwert. Business cycles, financial crises, and stock volatility. In CarnegieRochester Conference series on public policy, volume 31, pages 83–125. E

    Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

    Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. Practical deep reinforcement learning approach for stock trading. arXiv preprint arXiv:1811.07522, 2018.

    Paul D Yoo, Maria H Kim, and Tony Jan. Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. In International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), volume 2, pages 835–841. IEEE, 2005.
    Description: 碩士
    國立政治大學
    經濟學系
    108258021
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108258021
    Data Type: thesis
    DOI: 10.6814/NCCU202100671
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File SizeFormat
    802101.pdf2303KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback