English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50967876      Online Users : 931
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/136486
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136486


    Title: 利用SVM模型判斷股票資料的隨機性成分
    Using SVM Model to Classify the Random Components of Stock Data
    Authors: 賴彥儒
    Lai, Yan-Ru
    Contributors: 曾正男
    Tzeng, Jeng-Nan
    賴彥儒
    Lai, Yan-Ru
    Keywords: 預測模型
    類神經網路
    長短期記憶模型
    機器學習
    支持向量機
    總體經驗模態分解
    Forecasting model
    Artificial Neural Network
    Long­-short term memory,
    Machine learning
    Support vector machine
    EEMD
    Date: 2021
    Issue Date: 2021-08-04 15:40:23 (UTC+8)
    Abstract: 該研究的目的是對股票的資料進行分類,以判斷在一段時間內的資料為函數行為或隨機噪音。為了訓練該模型什麼是函數行為和什麼是隨機噪音,我們用三種數學模型對股票資料進行了模擬,並利用訊號處理的技巧從真實股票資料中找出建立數學模型所需要的參數。 我們使用支持向量機(SVM)和具有長期短期記憶(LSTM)的深度學習模型進行分類。 我們的結果表明,由我們的模擬數據訓練的模型使用在實際數據的預測結果,在顯著水準alpha = 0.05下,我們的分類在統計上有顯著差異。
    The purpose of the study was to classify the stock price as functional behavior or random noise in a fixed period. We simulated the data with three kinds of mathematics models to train the model what is functional behavior or random noise. The parameter of mathematics models calculated by the technique of signal processing, such as EEMD. We use the support vector machine(SVM) and the deep learning model with long short-term memory(LSTM) to classification. Our results showed that our model trained by our simulated data used prediction results based on actual data, which are statistically significantly different at the significance level alpha = 0.05 for our classification.
    Reference: [1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.
    [2] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436. Springer, 2012.
    [3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large­scale machine learning. Siam Review, 60(2):223–311, 2018.
    [4] Chris Chatfield and Mohammad Yar. Holt­winters forecasting: some practical issues. Journal of the Royal Statistical Society: Series D (The Statistician), 37(2):129–140, 1988.
    [5] J. X. Chen. The evolution of computing: Alphago. Computing in Science Engineering, 18(4):4–7, 2016.
    [6] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.
    [7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human­level performance on imagenet classification, 2015.
    [8] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long­ memory tasks. arXiv preprint arXiv:1602.06662, 2016.
    [9] Geoffrey E Hinton, Simon Osindero, and Yee­Whye Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.
    [10] Sepp Hochreiter and Jürgen Schmidhuber. Long short­term memory. Neural computation, 9(8):1735–1780, 1997.
    [11] Chih­WeiHsu,Chih­ChungChang,Chih­JenLin,etal.Apracticalguidetosupportvector classification, 2003.
    [12] Norden Eh Huang. Hilbert­Huang transform and its applications, volume 16. World Scientific, 2014.
    [13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.
    [14] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning, volume 112. Springer, 2013.
    [15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.
    [16] Guohui Li, Zhichao Yang, and Hong Yang. Noise reduction method of underwater acoustic signals based on uniform phase empirical mode decomposition, amplitude­aware permutation entropy, and pearson correlation coefficient. Entropy, 20(12), 2018.
    [17] K­R Muller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and Bernhard Scholkopf. An introduction to kernel­based learning algorithms. IEEE transactions on neural networks, 12(2):181–201, 2001.
    [18] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back­propagating errors. nature, 323(6088):533–536, 1986.
    [19] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11):2673–2681, 1997.
    [20] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non­smooth optimization: Convergence results and optimal averaging schemes. In International conference on machine learning, pages 71–79. PMLR, 2013.
    [21] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and computing, 14(3):199–222, 2004.
    [22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
    [23] EugeneVorontsov,ChihebTrabelsi,SamuelKadoury,andChrisPal.Onorthogonalityand learning recurrent networks with long term dependencies. In International Conference on Machine Learning, pages 3570–3578. PMLR, 2017.
    [24] Xing Wan. Influence of feature scaling on convergence of gradient iterative algorithm. In Journal of Physics: Conference Series, volume 1213, page 032021. IOP Publishing, 2019.
    [25] Zhaohua Wu and Norden E Huang. Ensemble empirical mode decomposition: a noise­ assisted data analysis method. Advances in adaptive data analysis, 1(01):1–41, 2009.
    Description: 碩士
    國立政治大學
    應用數學系
    109751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109751005
    Data Type: thesis
    DOI: 10.6814/NCCU202100699
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100501.pdf551KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback