政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136380
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50999586      Online Users : 957
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136380


    Title: 結合基本面分析及集成學習模型建構最適投資組合
    Combining Fundamental Analysis and Ensemble Learning to Construct the Optimal Portfolio
    Authors: 許育愷
    Hsu, Yu-Kai
    Contributors: 黃泓智
    許育愷
    Hsu, Yu-Kai
    Keywords: 基本面分析
    集成學習
    支持向量回歸模型
    多層感知器
    報酬率預測
    投資組合
    Fundamental Analysis
    Ensemble Learning
    SVR
    MLP
    Return Predict
    Portfolio
    Date: 2021
    Issue Date: 2021-08-04 14:55:43 (UTC+8)
    Abstract: 本研究透過結合基本面分析以及集成學習的方式,在上市個股當中建立最適的投資組合,首先藉由兩個基本面的因子:本益比(PE Ratio)與股價淨值比(PB Ratio)篩選個股,接著,藉由包含支持向量迴歸模型(SVR)及多層感知器(MLP)的集成學習模型預測個股的數日後報酬,藉此挖掘出有潛力的個股進行投資組合的配置,並藉由歷史回測分析其績效。實驗結果顯示,在基本面篩選下的投資組合績效高於大盤指數績效,而加入集成學習模型後可以進一步提升其報酬績效。
    The purpose of this study is trying to combine fundamental analysis and ensemble learning model to construct an optimal portfolio with listed stocks. First, use two fundamental factor, price-to-equity ratio and price-to-book ratio, to select potential stocks, and then predict the future return of each stock through ensemble learning model which including SVR and MLP to construct an optimal portfolio. Finally, analysis the performance according history stock data. The result shows that the portfolio constructed by only fundamental analysis outperforms Taiwan Capitalization Weighted Stock Index (TAIEX), and the portfolio constructed by fundamental analysis and ensemble learning outperforms the portfolio constructed by only fundamental analysis.
    Reference: 1. 張家瑋(2017)。利用籌碼面分析與關聯規則建構最適投資組合。國立政治大學碩士論文。
    2. 蕭鈞銓(2016)。以基本面分析建構最適資產配置流程。國立政治大學碩士論文。
    3. Basu, S. (1977). Investment performance of common stocks in relation to their price‐earnings ratios: A test of the efficient market hypothesis. The journal of Finance, 32(3), 663-682.
    4. Chan, L. K., Hamao, Y., & Lakonishok, J. (1991). Fundamentals and stock returns in Japan. The journal of finance, 46(5), 1739-1764.
    5. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International journal of forecasting, 5(4), 559-583.
    6. Hegazy, O., Soliman, O. S., & Salam, M. A. (2014). A machine learning model for stock market prediction. International Journal of Computer Science and Telecommunications, 4(12), 17-23
    7. Huang, C. S., & Liu, Y. S. (2019). Machine Learning on Stock Price Movement Forecast: The Sample of the Taiwan Stock Exchange. International Journal of Economics and Financial Issues, 9(2), 189-201.
    8. Lev, B., & Thiagarajan, S. R. (1993). Fundamental Information Analysis. Journal of Accounting Research, 31(2), 190–215.
    9. Markowitz H., (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91.
    10. Mangalampalli, R., Pandey, V., Khetre, P., & Malviya, V. (2020). Stock Prediction using Hybrid ARIMA and GRU Models. International Journal of Engineering Research & Technology, 9(5), 737-743.
    11. Sharpe, W. F. (1966). Mutual fund performance. The Journal of business, 39(1), 119-138.
    12. Zhang, J., Li, L., & Chen, W. (2020). Predicting stock price using two-stage machine learning techniques. Computational Economics, 1-25.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    108358025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108358025
    Data Type: thesis
    DOI: 10.6814/NCCU202100808
    Appears in Collections:[Department of Risk Management and Insurance] Theses

    Files in This Item:

    File Description SizeFormat
    802501.pdf1427KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback