政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136368
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52900831      線上人數 : 827
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136368


    題名: 財務風險管理與清償能力機制之研究分析
    Essays on Financial Risk Management and Solvency Assessment Mechanisms
    作者: 杜昌燁
    Tu, Chang-Ye
    貢獻者: 張士傑
    杜昌燁
    Tu, Chang-Ye
    關鍵詞: 界限選擇權
    百慕達式選擇權
    有限元素法
    李群分析
    國際板債券
    再投資風險
    Barrier options
    Bermudan options
    Finite element methods
    Lie group analysis
    International bonds
    Reinvestment risks
    日期: 2021
    上傳時間: 2021-08-04 14:52:59 (UTC+8)
    摘要: 本研究由四篇關於金融風險管理和償付能力評估議題的論文所構成,這些論文充分使用了界限與百慕達式選擇權的分析概念。本文第二章針對早期預警系統下的各種情境計算被保險人的終端期望效用,協助保險公司進行資產負債管理決策。早期預警系統的建構由指定破產與監理邊界開始,當資產價值觸及監理邊界時進行一系列的處置,如改變投資組合與增資等。在本文資產模型下的計算顯示,當資產降至監理邊界之低水平時,改變投資組合與增資並行可使終端期望效用最大化;以上的計算過程使用了與評價界限選擇權相同的複雜違約概率表示式。第三章介紹有限元素法理論,同時應用在雙界限選擇權定價問題。數值計算結果驗證有限元素法求解選擇權問題的準確性。在第四章中,李群分析技術被用於建構源自 Merton 最適消費投資問題的 Hamilton-Jacobi-Bellman (HJB) 方程式的精確解,而此精確解指出了 Merton 對最適消費投資問題處理之不足處。第五章討論國際板債券的再投資風險,並與所有贖回情境下的最大預期損失相連結。再投資風險的估計等同於百慕達式選擇權的評價;歷史資料統計指出國際板債券的收益率隨機模型遵循指數 Lévy 過程,因此可使用 COS 法等高效數值方法進行評價。在當前市場條件下,國際板債券的再投資風險估計為 113 至 189 bps,具體取決於初始宣告收益率。
    The thesis is a collection of four papers on topics of financial risk management and solvency assessment which exploit the concept and the analytics of barrier and Bermudan options. In chapter 2, the terminal expected utility of the insured under the early warning system are computed for different regulatory schemes, and the results provide the insight for the insurer`s asset-liability management decisions. The explicit consideration of the early warning system involves intricate default probability expressions of the underlying asset model, which is the essential ingredient for pricing barrier options. Chapter 3 introduces one of the most accurate numerical methods, namely the finite element method (FEM). The remarkable accuracy is demonstrated by applications to the pricing of double barrier options. In chapter 4, the Lie group analysis techniques is applied to construct the exact solution of the Hamilton-Jacobi-Bellman (HJB) equation arising in the classical optimal consumption-investment problem solved by Merton. The upshot of the analysis is that Merton`s treatment of the problem is incomplete and more emphasis should be placed on the bankruptcy scenario. In chapter 5, it is argued that the reinvestment risk of the international bonds is associated with the maximum expected loss in all redemption scenarios, and the underlying stochastic internal rate of return model of international bonds follows the exponential Lévy process. The evaluation of the reinvestment risk is equivalent to the pricing of a certain non-standard Bermudan option and efficient numerical method such as the COS method can be applied. Under current market condition the reinvestment risk is estimated to be 113 to 189 bps, depending on the initial IRR.
    參考文獻: Aase, K.K., Persson, S.A., 1994. Pricing of unit-linked life insurance policies. Scandinavian Actuarial Journal 1, 26–52.
    Abadir, K., Magnus, J., 2005. Matrix Algebra. Cambridge University Press, Cambridge.
    Achdou, Y., Franchi, B., Tchou, N., 2005. A partial differential equation connected to option pricing with stochastic volatility: Regularity results and discretization. Math. Comp. 74, 1291–1322.
    Achdou, Y., Pironneau, O., 2005. Computational Methods for Option Pricing. SIAM Publications, Philadelphia.
    Achdou, Y., Tchou, N., 2002. Variational analysis for the Black and Scholes equation with stochastic volatility. M2AN Math. Model. Numer. Anal. 36, 373–395.
    Adams, R.A., Fournier, J.F., 2003. Sobolev Spaces. second ed., Elsevier, Amsterdam.
    Alberty, J., Carstensen, C., Funken, S., 1999. Remarks around 50 lines of MATLAB: Short finite element implementation. Numerical Algorithms 20, 117–137.
    Alberty, J., Carstensen, C., Funken, S., Klose, R., 2002. MATLAB implementation of the finite element method in elasticity. Computing 69, 239–263.
    Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N., 2015. The FEniCS project version 1.5. Archive of Numerical Software 3. doi:10.11588/ans.2015.100.20553.
    Anco, S.C., Bluman, G.W., 2002. Symmetry and Integration Methods for Differential Equations. Springer-Verlag, New York.
    Applebaum, D., 2009. Lévy Processes and Stochastic Calculus. Second ed., Cambridge University Press, Cambridge.
    Bacinello, A.R., Ortu, F., 1993. Pricing equity linked life insurance with endogenous minimum guarantee. Insurance: Mathematics and Economics 12, 245–257.
    Bacinello, A.R., Ortu, F., 1996. Fixed income linked life insurance policies with minimum guarantees: Pricing models and numerical results. European Journal of Operational Research 91, 235–249.
    Bahriawati, C., Carstensen, C., 2005. Three MATLAB implementations of the lowestorder Raviart-Thomas MFEM with a posteriori error control. Computational Methods in Applied Mathematics 5, 333–361.
    Baldi, P., 2017. Stochastic Calculus: An Introduction Through Theory and Exercises. Springer-Verlag, Cham, Switzerland.
    Barndorff-Nielsen, O.E., 1998. Processes of normal inverse Gaussian type. Finance and Stochastics 2, 41–68.
    Beran, J., 2017. Mathematical Foundations of Time Series Analysis: A Concise Introduction. Springer International, Cham.
    Bertoin, L., 1996. Lévy Processes. Cambridge University Press, Cambridge.
    Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654.
    Bluman, G.W., Cheviakov, A.F., Anco, S.C., 2010. Application of Symmetry Methods to Partial Differential Equations. Springer-Verlag, New York.
    Bluman, G.W., Kumei, S., 1989. Symmetries and Differential Equations. Springer-Verlag, New York.
    Bordag, L., Yamshchikov, I., 2017. Optimization problem for a portfolio with an illiquid asset: Lie group analysis. J. Math. Anal. Appl. 453, 668–699.
    Boyle, P., Schwartz, E.S., 1977. Equilibrium prices of guarantees under equity-linked contracts. Journal of Risk and Insurance 44, 639–680.
    Braun, A., Rymaszewski, P., Schmeiser, H., 2011. A traffic light approach to solvency measurement of Swiss occupational pension funds. The Geneva Papers on Risk and Insurance – Issues and Practice 36, 254–282.
    Brennan, M.J., Schwartz, E.S., 1976. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics 3, 195–213.
    Brennan, M.J., Schwartz, E.S., 1979. Alternative investment strategies for the issuers of equity linked life insurance with an asset value guarantee. Journal of Business 52, 63–93.
    Brenner, S., Scott, R., 2008. The Mathematical Theory of Finite Element Methods. third ed., Springer-Verlag, New York.
    Brezis, H., 2011. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, Berlin.
    Briys, E., de Varenne, F., 1994. Life insurance in a contingent claim framework: Pricing and regulatory implications. The Geneva Papers on Risk and Insurance Theory 19, 53–72.
    Briys, E., de Varenne, F., 1997. On the risk of insurance liabilities: Debunking some common pitfalls. Journal of Risk and Insurance 64, 673–694.
    Buchen, P., 2010. An Introduction to Exotic Option Pricing. Chapman & Hall/CRC, London.
    Carmona, R., Touzi, N., 2008. Optimal multiple stopping and valuation of swing options. Mathematical Finance 18, 239–268.
    Carstensen, C., Klose, R., 2002. Elastoviscoplastic finite element analysis in 100 lines of MATLAB. J. Numer. Math. 10, 157–192.
    Cazenave, T., Haraux, A., 1998. An Introduction to Semilinear Evolution Equations. Oxford University Press, New York.
    Champagne, B., Hereman, W., Winternitz, P., 1991. The computer calculation of Lie point symmetries of large systems of differential equations. Comput. Phys. Commun. 66, 319–340.
    Chen, A., Hieber, P., 2016. Optimal asset allocation in life insurance: The impact of regulation. ASTIN Bulletin 46, 605–626.
    Chen, A., Hieber, P., Lämmlein, L., 2020. Regulatory measures of distressed insurance undertaking: A comparative study. Scandinavian Actuarial Journal 2020, 30–43.
    Cheng, C., Li, J., 2018. Early default risk and surrender risk: Impacts on participating life insurance policies. Insurance: Mathematics and Economics 78, 30–43.
    Chow, Y.S., Robbins, H., Siegmund, D., 1971. Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston.
    Ciarlet, P.G., 1978. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam.
    Consiglio, A., Saunders, D., Zenios, S.A., 2006. Asset and liability management for insurance products with minimum guarantees: The UK case. Journal of Banking and Finance 30, 645–667.
    Cont, R., Tankov, P., 2004. Financial Modeling with Jump Processes. Chapman & Hall/CRC, London.
    Courant, R., 1943. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23.
    Dahl, M., 2007. A discrete-time model for reinvestment risk in bond markets. ASTIN Bulletin 37, 235–264.
    Dahl, M., 2009. A continuous-time model for reinvestment risk in bond markets. Quantitative Finance 9, 451–464.
    Døskeland, T.M., Nordahl, H.A., 2008. Optimal pension insurance design. Journal of Banking and Finance 32, 382–392.
    Ern, A., Guermond, J.L., 2004. Theory and Practice of Finite Elements. Springer-Verlag, Berlin.
    Evans, L.C., 2010. Partial Differential Equations. second ed., American Mathematical Society, Providence, R.I.
    Fang, F., Oosterlee, C.W., 2008. A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31, 826–848.
    Fang, F., Oosterlee, C.W., 2009. Pricing early-exercise options and discrete barrier options by Fourier-cosine series expansions. Numer. Math. 114, 27–62.
    Fouque, J.P., Papanicolaou, G., Sircar, R., Sølna, K., 2011. Multiscale Stochastic Volatility for Equity Interest Rate and Credit Derivatives. Cambridge University Press, Cambridge.
    Gazizov, R.K., Ibragimov, N.H., 1998. Lie symmetry analysis of differential equations in finance. Nonlinear Dynamics 17, 387–407.
    Girault, V., Raviart, P.A., 1986. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin.
    Grisvard, P., 1985. Elliptic Problems in Nonsmooth Domains. Pitman, Boston.
    Grosen, A., Jørgensen, P.L., 1997. Valuation of early exercisable interest rate guarantees. Journal of Risk and Insurance 64, 481–503.
    Grosen, A., Jørgensen, P.L., 2000. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insurance: Mathematics and Economics 26, 37–57.
    Grosen, A., Jørgensen, P.L., 2002. Life insurance liabilities at market value: An analysis of insolvency risk, bonus policy, and regulatory intervention rules in a barrier option framework. Journal of Risk and Insurance 69, 63–91.
    Guillaume, T., 2019. On the multidimensional black-scholes partial differential equation. Annals of Operations Research 281, 229–251.
    van Haastrecht, A., Lord, R., Pelsser, A., Schrager, R., 2009. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility. Insurance: Mathematics and Economics 45, 436–448.
    van Haastrecht, A., Plat, R., Pelsser, A., 2010. Valuation of guaranteed annuity options using a stochastic volatility model for equity price. Insurance: Mathematics and Economics 47, 266–277.
    Haug, E.G., 2004. The Complete Guide to Option Pricing Formulas. second ed., McGrawHill, New York.
    Hereman, W., 1997. Review of symbolic software for Lie symmetry analysis. Math. Comput. Modell. 25, 115–132.
    Heston, S., 1993. A closed-form solutions for options with stochastic volatility. The Review of Financial Studies 6, 327–343.
    Hilber, N., Reichmann, O., Schwab, C., Winter, C., 2013. Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing. Springer-Verlag, Berlin.
    in’t Hout, K., 2017. Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance. Palgrave Macmillan, London.
    Hwang, Y.W., Chang, S.C., Wu, Y.C., 2015. Capital forbearance, ex ante life insurance guaranty schemes, and interest rate uncertainty. North American Actuarial Journal 19, 94–115.
    Hydon, P., 2000. Symmetry Methods for Differential Equations: A Beginner’s Guide. Cambridge University Press, Cambridge.
    Ibragimov, N.H., 1999. Elementary Lie Group Analysis and Ordinary Differential Equations. John Wiley & Sons, Chichester.
    Ikonen, S., Toivanen, J., 2008. Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations 24, 104–126.
    Jacobs, R.L., Jones, R.A., 1986. A two factor latent variable model of the term structure of interest rates. http://www.sfu.ca/~rjones/econ811/readings/twofac.pdf.
    Jacod, J., Shiryaev, A.N., 2003. Limit Theorems for Stochastic Processes. Second ed., Springer-Verlag, Berlin.
    Jeanblanc, M., Yor, M., Chesney, M., 2009. Mathematical Methods for Financial Markets. Springer-Verlag, London.
    Jensen, B., Jørgensen, P.L., Grosen, A., 2001. A finite difference approach to the valuation of path dependent life insurance liabilities. The Geneva Papers on Risk and Insurance Theory 26, 57–84.
    Jensen, B.A., Sørensen, C., 2001. Paying for minimum interest rate guarantees: Who should compensate who? European Financial Management 7, 183–211.
    Jiang, L.S., 2005. Mathematical Modeling and Methods of Option Pricing. World Scientific, Singapore.
    Jørgensen, P.L., 2007. Traffic light options. Journal of Banking and Finance 31, 3698–3719.
    Kangro, R., Nicolaides, R., 2000. Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368.
    Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E., 1988. Explicit solution of a general consumption/investment problem. Mathematics of Operations Research 11, 395–401.
    Kohler, M., 2010. A review on regression-based Monte Carlo methods for pricing American options, in: Devroye, L., Karasözen, B., Kohler, M., Korn, R. (Eds.), Recent Developments in Applied Probability and Statistics. Physica-Verlag HD, pp. 37–58.
    Kunitomo, N., Ikeda, M., 1992. Pricing options with curved boundaries. Mathematical Finance 2, 275–298.
    Lipton, A., 2001. Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach. World Scientific, Singapore.
    Logg, A., Mardal, K.A., Wells, G.N., 2012. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer. doi:10.1007/978-3-64223099-8.
    Madan, D.B., Carr, P.P., Chang, E.C., 1998. The variance gamma process and option pricing. European Finance Review 2, 79–105.
    Madan, D.B., Seneta, E., 1990. The variance-gamma (v. g.) for share market returns. Journal of Business 63, 511–524.
    McLean, W., 2000. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge.
    McNeil, A., Frey, R., Embrechts, P., 2005. Quantitative Risk Management Concepts: Techniques and Tools. Princeton University Press, Princeton, N. J.
    Merton, R., 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. The Review of Economics and Statistics 51, 247–257.
    Merton, R., 1971. Optimum consumption and portfolio rules in a continuous time model. J. Econ. Theory 3, 373–413.
    Newman, S.G., 2019. Semi-Riemannian Geometry: The Mathematical Language of General Relativity. John Wiley & Sons, Hoboken N.J.
    Olver, P.J., 1993. Applications of Lie Groups to Differential Equations. second ed., Springer-Verlag, New York.
    Oosterlee, C.W., Grzelak, L.A., 2019. A Mathematical Modeling and Computation in Finance with Exercises and Python and MATLAB Computer Codes. World Scientific, London.
    Ovsiannikov, L.V., 1982. Group Analysis of Differential Equations. Academic Press, New York.
    Peskir, G., Shiryaev, A.N., 2006. Optimal Stopping and Free-Boundary Problems. Birkhaüser, Basel.
    Pham, H., 2009. Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin.
    Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K., 1983. QUADPACK: A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.
    Prause, K., 1999. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis. University of Freiburg.
    Protter, P., 2005. Stochastic Integration and Differential Equations. second ed., Springer Verlag, New York.
    Rémillard, B., 2011. Validity of the parametric bootstrap for goodness-of-fit testing in dynamic models. Social Science Research Network (SSRN) Working Paper Series. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1966476.
    Rémillard, B., 2012. Non-parametric change point problems using multipliers. Social Science Research Network (SSRN) Working Paper Series. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2043632.
    Riable, S., 2000. Lévy Processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis. University of Freiburg.
    Richtmyer, R., Morton, K., 1967. Difference Methods for Initial-Value Problems. second ed., John Wiley & Sons, New York.
    Rouah, F., 2013. The Heston Model and its Extensions in MATLAB and C#. John Wiley & Sons, Hoboken, N.J.
    Sato, K.I., 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.
    Schoutens, W., 2003. Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Chichester, UK.
    Schrager, D.F., Pelsser, A., 2004. Pricing rate of return guarantees in regular premium unit linked insurance. Insurance: Mathematics and Economics 35, 369–398.
    Seneta, E., 2004. Fitting the variance-gamma model to financial data. Journal of Applied Probability 41, 177–187.
    Sethi, S.P., 2019. Optimal Control Theory: Applications to Management Science and Economics. third ed., Springer-Verlag, Cham.
    Sethi, S.P., Taksar, M., 1988. A note on Merton’s “Optimum consumption and portfolio rules in a continuous time model”. J. Econ. Theory 46, 395–401.
    Shen, W., Xu, H., 2005. The valuation of unit-linked policies with or without surrender options. Insurance: Mathematics and Economics 36, 79–92.
    Shiryaev, A.N., 1978. Optimal Stopping Rules. Springer-Verlag, Berlin.
    Silverman, B., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
    Smith, G.D., 1985. Numerical Solution of Partial Differential Equations: Finite Difference Methods. third ed., Oxford University Press, Oxford, UK.
    Sommer, D., 1997. Pricing and hedging of contingent claims in term structure models with exogenous issuing of new bonds. European Financial Management 3, 269–292.
    Stefanovits, D., Wüthrich, M.V., 2014. Hedging of long term zero-coupon bonds in a market model with reinvestment risk. European Actuarial Journal 4, 49–75.
    Stephani, H., 1989. Differential Equations: Their Solution Using Symmetries. Cambridge University Press, Cambridge.
    Strikwerda, J.C., 2005. Finite Difference Schemes and Partial Differential Equations. second ed., SIAM Publications, Philadelphia.
    Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, New York.
    Teplova, T.V., Rodina, V.A., 2021. The reinvestment risk premium in the valuation of British and Russian government bonds. Research in International Business and Finance 55. Article 101319.
    Tewari, M., Byrd, A., Ramanlal, P., 2015. Callable bonds, reinvestment risk, and credit rating improvements: Role of the call premium. Journal of Financial Economics 115, 349–360.
    Thomée, V., 2006. Galerkin Finite Element Methods for Parabolic Problems. second ed., Springer-Verlag, Berlin.
    Topper, J., 2005. Financial Engineering with Finite Elements. John Wiley & Sons, Chichester.
    Verfürth, D., 2013. A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford, UK.
    Wei, X., Gaudenzi, M., Zanette, A., 2013. Pricing ratchet equity-indexed annuities with early surrender risk in a CIR++ model. North American Actuarial Journal 17, 229–252.
    Weibel, M., Luethi, D., Breymann, W., 2020. ghyp: Generalized Hyperbolic Distribution and Its Special Cases. URL: https://CRAN.R-project.org/package=ghyp. r package version 1.6.1.
    Windcliff, H., Forsyth, P.A., Vetzal, K.R., 2004. Analysis of the stability of the linear boundary condition for the Black-Scholes equation. Journal of Computational Finance 8, 65–92.
    Windcliff, H.A., Forsyth, P.A., Vetzal, K.R., 2006. Numerical methods and volatility models for valuing cliquet options. Applied Mathematical Finance 13, 353–386.
    Winkler, G., Apel, T., Wystup, U., 2002. Valuation of options in Heston’s stochastic volatility model using finite element models, in: Hakala, J., Wystup, U. (Eds.), Foreign Exchange Risk. Risk Books, London. URL: https://mathfinance.com/wp-content/uploads/2017/06/hestonfem.pdf.
    Yosida, K., 1980. Functional Analysis. sixth ed., Springer-Verlag, Berlin.
    Zhang, B., Oosterlee, C.W., 2013. An efficient pricing algorithm for swing options based on Fourier cosine expansions. Journal of Computational Finance 16, 1–32.
    描述: 博士
    國立政治大學
    風險管理與保險學系
    105358502
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105358502
    資料類型: thesis
    DOI: 10.6814/NCCU202101000
    顯示於類別:[風險管理與保險學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    850201.pdf2026KbAdobe PDF277檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋