Reference: | Aase, K.K., Persson, S.A., 1994. Pricing of unit-linked life insurance policies. Scandinavian Actuarial Journal 1, 26–52. Abadir, K., Magnus, J., 2005. Matrix Algebra. Cambridge University Press, Cambridge. Achdou, Y., Franchi, B., Tchou, N., 2005. A partial differential equation connected to option pricing with stochastic volatility: Regularity results and discretization. Math. Comp. 74, 1291–1322. Achdou, Y., Pironneau, O., 2005. Computational Methods for Option Pricing. SIAM Publications, Philadelphia. Achdou, Y., Tchou, N., 2002. Variational analysis for the Black and Scholes equation with stochastic volatility. M2AN Math. Model. Numer. Anal. 36, 373–395. Adams, R.A., Fournier, J.F., 2003. Sobolev Spaces. second ed., Elsevier, Amsterdam. Alberty, J., Carstensen, C., Funken, S., 1999. Remarks around 50 lines of MATLAB: Short finite element implementation. Numerical Algorithms 20, 117–137. Alberty, J., Carstensen, C., Funken, S., Klose, R., 2002. MATLAB implementation of the finite element method in elasticity. Computing 69, 239–263. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N., 2015. The FEniCS project version 1.5. Archive of Numerical Software 3. doi:10.11588/ans.2015.100.20553. Anco, S.C., Bluman, G.W., 2002. Symmetry and Integration Methods for Differential Equations. Springer-Verlag, New York. Applebaum, D., 2009. Lévy Processes and Stochastic Calculus. Second ed., Cambridge University Press, Cambridge. Bacinello, A.R., Ortu, F., 1993. Pricing equity linked life insurance with endogenous minimum guarantee. Insurance: Mathematics and Economics 12, 245–257. Bacinello, A.R., Ortu, F., 1996. Fixed income linked life insurance policies with minimum guarantees: Pricing models and numerical results. European Journal of Operational Research 91, 235–249. Bahriawati, C., Carstensen, C., 2005. Three MATLAB implementations of the lowestorder Raviart-Thomas MFEM with a posteriori error control. Computational Methods in Applied Mathematics 5, 333–361. Baldi, P., 2017. Stochastic Calculus: An Introduction Through Theory and Exercises. Springer-Verlag, Cham, Switzerland. Barndorff-Nielsen, O.E., 1998. Processes of normal inverse Gaussian type. Finance and Stochastics 2, 41–68. Beran, J., 2017. Mathematical Foundations of Time Series Analysis: A Concise Introduction. Springer International, Cham. Bertoin, L., 1996. Lévy Processes. Cambridge University Press, Cambridge. Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654. Bluman, G.W., Cheviakov, A.F., Anco, S.C., 2010. Application of Symmetry Methods to Partial Differential Equations. Springer-Verlag, New York. Bluman, G.W., Kumei, S., 1989. Symmetries and Differential Equations. Springer-Verlag, New York. Bordag, L., Yamshchikov, I., 2017. Optimization problem for a portfolio with an illiquid asset: Lie group analysis. J. Math. Anal. Appl. 453, 668–699. Boyle, P., Schwartz, E.S., 1977. Equilibrium prices of guarantees under equity-linked contracts. Journal of Risk and Insurance 44, 639–680. Braun, A., Rymaszewski, P., Schmeiser, H., 2011. A traffic light approach to solvency measurement of Swiss occupational pension funds. The Geneva Papers on Risk and Insurance – Issues and Practice 36, 254–282. Brennan, M.J., Schwartz, E.S., 1976. The pricing of equity-linked life insurance policies with an asset value guarantee. Journal of Financial Economics 3, 195–213. Brennan, M.J., Schwartz, E.S., 1979. Alternative investment strategies for the issuers of equity linked life insurance with an asset value guarantee. Journal of Business 52, 63–93. Brenner, S., Scott, R., 2008. The Mathematical Theory of Finite Element Methods. third ed., Springer-Verlag, New York. Brezis, H., 2011. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, Berlin. Briys, E., de Varenne, F., 1994. Life insurance in a contingent claim framework: Pricing and regulatory implications. The Geneva Papers on Risk and Insurance Theory 19, 53–72. Briys, E., de Varenne, F., 1997. On the risk of insurance liabilities: Debunking some common pitfalls. Journal of Risk and Insurance 64, 673–694. Buchen, P., 2010. An Introduction to Exotic Option Pricing. Chapman & Hall/CRC, London. Carmona, R., Touzi, N., 2008. Optimal multiple stopping and valuation of swing options. Mathematical Finance 18, 239–268. Carstensen, C., Klose, R., 2002. Elastoviscoplastic finite element analysis in 100 lines of MATLAB. J. Numer. Math. 10, 157–192. Cazenave, T., Haraux, A., 1998. An Introduction to Semilinear Evolution Equations. Oxford University Press, New York. Champagne, B., Hereman, W., Winternitz, P., 1991. The computer calculation of Lie point symmetries of large systems of differential equations. Comput. Phys. Commun. 66, 319–340. Chen, A., Hieber, P., 2016. Optimal asset allocation in life insurance: The impact of regulation. ASTIN Bulletin 46, 605–626. Chen, A., Hieber, P., Lämmlein, L., 2020. Regulatory measures of distressed insurance undertaking: A comparative study. Scandinavian Actuarial Journal 2020, 30–43. Cheng, C., Li, J., 2018. Early default risk and surrender risk: Impacts on participating life insurance policies. Insurance: Mathematics and Economics 78, 30–43. Chow, Y.S., Robbins, H., Siegmund, D., 1971. Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston. Ciarlet, P.G., 1978. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam. Consiglio, A., Saunders, D., Zenios, S.A., 2006. Asset and liability management for insurance products with minimum guarantees: The UK case. Journal of Banking and Finance 30, 645–667. Cont, R., Tankov, P., 2004. Financial Modeling with Jump Processes. Chapman & Hall/CRC, London. Courant, R., 1943. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23. Dahl, M., 2007. A discrete-time model for reinvestment risk in bond markets. ASTIN Bulletin 37, 235–264. Dahl, M., 2009. A continuous-time model for reinvestment risk in bond markets. Quantitative Finance 9, 451–464. Døskeland, T.M., Nordahl, H.A., 2008. Optimal pension insurance design. Journal of Banking and Finance 32, 382–392. Ern, A., Guermond, J.L., 2004. Theory and Practice of Finite Elements. Springer-Verlag, Berlin. Evans, L.C., 2010. Partial Differential Equations. second ed., American Mathematical Society, Providence, R.I. Fang, F., Oosterlee, C.W., 2008. A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31, 826–848. Fang, F., Oosterlee, C.W., 2009. Pricing early-exercise options and discrete barrier options by Fourier-cosine series expansions. Numer. Math. 114, 27–62. Fouque, J.P., Papanicolaou, G., Sircar, R., Sølna, K., 2011. Multiscale Stochastic Volatility for Equity Interest Rate and Credit Derivatives. Cambridge University Press, Cambridge. Gazizov, R.K., Ibragimov, N.H., 1998. Lie symmetry analysis of differential equations in finance. Nonlinear Dynamics 17, 387–407. Girault, V., Raviart, P.A., 1986. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin. Grisvard, P., 1985. Elliptic Problems in Nonsmooth Domains. Pitman, Boston. Grosen, A., Jørgensen, P.L., 1997. Valuation of early exercisable interest rate guarantees. Journal of Risk and Insurance 64, 481–503. Grosen, A., Jørgensen, P.L., 2000. Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies. Insurance: Mathematics and Economics 26, 37–57. Grosen, A., Jørgensen, P.L., 2002. Life insurance liabilities at market value: An analysis of insolvency risk, bonus policy, and regulatory intervention rules in a barrier option framework. Journal of Risk and Insurance 69, 63–91. Guillaume, T., 2019. On the multidimensional black-scholes partial differential equation. Annals of Operations Research 281, 229–251. van Haastrecht, A., Lord, R., Pelsser, A., Schrager, R., 2009. Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility. Insurance: Mathematics and Economics 45, 436–448. van Haastrecht, A., Plat, R., Pelsser, A., 2010. Valuation of guaranteed annuity options using a stochastic volatility model for equity price. Insurance: Mathematics and Economics 47, 266–277. Haug, E.G., 2004. The Complete Guide to Option Pricing Formulas. second ed., McGrawHill, New York. Hereman, W., 1997. Review of symbolic software for Lie symmetry analysis. Math. Comput. Modell. 25, 115–132. Heston, S., 1993. A closed-form solutions for options with stochastic volatility. The Review of Financial Studies 6, 327–343. Hilber, N., Reichmann, O., Schwab, C., Winter, C., 2013. Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing. Springer-Verlag, Berlin. in’t Hout, K., 2017. Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance. Palgrave Macmillan, London. Hwang, Y.W., Chang, S.C., Wu, Y.C., 2015. Capital forbearance, ex ante life insurance guaranty schemes, and interest rate uncertainty. North American Actuarial Journal 19, 94–115. Hydon, P., 2000. Symmetry Methods for Differential Equations: A Beginner’s Guide. Cambridge University Press, Cambridge. Ibragimov, N.H., 1999. Elementary Lie Group Analysis and Ordinary Differential Equations. John Wiley & Sons, Chichester. Ikonen, S., Toivanen, J., 2008. Efficient numerical methods for pricing American options under stochastic volatility. Numerical Methods for Partial Differential Equations 24, 104–126. Jacobs, R.L., Jones, R.A., 1986. A two factor latent variable model of the term structure of interest rates. http://www.sfu.ca/~rjones/econ811/readings/twofac.pdf. Jacod, J., Shiryaev, A.N., 2003. Limit Theorems for Stochastic Processes. Second ed., Springer-Verlag, Berlin. Jeanblanc, M., Yor, M., Chesney, M., 2009. Mathematical Methods for Financial Markets. Springer-Verlag, London. Jensen, B., Jørgensen, P.L., Grosen, A., 2001. A finite difference approach to the valuation of path dependent life insurance liabilities. The Geneva Papers on Risk and Insurance Theory 26, 57–84. Jensen, B.A., Sørensen, C., 2001. Paying for minimum interest rate guarantees: Who should compensate who? European Financial Management 7, 183–211. Jiang, L.S., 2005. Mathematical Modeling and Methods of Option Pricing. World Scientific, Singapore. Jørgensen, P.L., 2007. Traffic light options. Journal of Banking and Finance 31, 3698–3719. Kangro, R., Nicolaides, R., 2000. Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368. Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E., 1988. Explicit solution of a general consumption/investment problem. Mathematics of Operations Research 11, 395–401. Kohler, M., 2010. A review on regression-based Monte Carlo methods for pricing American options, in: Devroye, L., Karasözen, B., Kohler, M., Korn, R. (Eds.), Recent Developments in Applied Probability and Statistics. Physica-Verlag HD, pp. 37–58. Kunitomo, N., Ikeda, M., 1992. Pricing options with curved boundaries. Mathematical Finance 2, 275–298. Lipton, A., 2001. Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach. World Scientific, Singapore. Logg, A., Mardal, K.A., Wells, G.N., 2012. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer. doi:10.1007/978-3-64223099-8. Madan, D.B., Carr, P.P., Chang, E.C., 1998. The variance gamma process and option pricing. European Finance Review 2, 79–105. Madan, D.B., Seneta, E., 1990. The variance-gamma (v. g.) for share market returns. Journal of Business 63, 511–524. McLean, W., 2000. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge. McNeil, A., Frey, R., Embrechts, P., 2005. Quantitative Risk Management Concepts: Techniques and Tools. Princeton University Press, Princeton, N. J. Merton, R., 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. The Review of Economics and Statistics 51, 247–257. Merton, R., 1971. Optimum consumption and portfolio rules in a continuous time model. J. Econ. Theory 3, 373–413. Newman, S.G., 2019. Semi-Riemannian Geometry: The Mathematical Language of General Relativity. John Wiley & Sons, Hoboken N.J. Olver, P.J., 1993. Applications of Lie Groups to Differential Equations. second ed., Springer-Verlag, New York. Oosterlee, C.W., Grzelak, L.A., 2019. A Mathematical Modeling and Computation in Finance with Exercises and Python and MATLAB Computer Codes. World Scientific, London. Ovsiannikov, L.V., 1982. Group Analysis of Differential Equations. Academic Press, New York. Peskir, G., Shiryaev, A.N., 2006. Optimal Stopping and Free-Boundary Problems. Birkhaüser, Basel. Pham, H., 2009. Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin. Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K., 1983. QUADPACK: A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin. Prause, K., 1999. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis. University of Freiburg. Protter, P., 2005. Stochastic Integration and Differential Equations. second ed., Springer Verlag, New York. Rémillard, B., 2011. Validity of the parametric bootstrap for goodness-of-fit testing in dynamic models. Social Science Research Network (SSRN) Working Paper Series. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1966476. Rémillard, B., 2012. Non-parametric change point problems using multipliers. Social Science Research Network (SSRN) Working Paper Series. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2043632. Riable, S., 2000. Lévy Processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis. University of Freiburg. Richtmyer, R., Morton, K., 1967. Difference Methods for Initial-Value Problems. second ed., John Wiley & Sons, New York. Rouah, F., 2013. The Heston Model and its Extensions in MATLAB and C#. John Wiley & Sons, Hoboken, N.J. Sato, K.I., 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. Schoutens, W., 2003. Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Chichester, UK. Schrager, D.F., Pelsser, A., 2004. Pricing rate of return guarantees in regular premium unit linked insurance. Insurance: Mathematics and Economics 35, 369–398. Seneta, E., 2004. Fitting the variance-gamma model to financial data. Journal of Applied Probability 41, 177–187. Sethi, S.P., 2019. Optimal Control Theory: Applications to Management Science and Economics. third ed., Springer-Verlag, Cham. Sethi, S.P., Taksar, M., 1988. A note on Merton’s “Optimum consumption and portfolio rules in a continuous time model”. J. Econ. Theory 46, 395–401. Shen, W., Xu, H., 2005. The valuation of unit-linked policies with or without surrender options. Insurance: Mathematics and Economics 36, 79–92. Shiryaev, A.N., 1978. Optimal Stopping Rules. Springer-Verlag, Berlin. Silverman, B., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London. Smith, G.D., 1985. Numerical Solution of Partial Differential Equations: Finite Difference Methods. third ed., Oxford University Press, Oxford, UK. Sommer, D., 1997. Pricing and hedging of contingent claims in term structure models with exogenous issuing of new bonds. European Financial Management 3, 269–292. Stefanovits, D., Wüthrich, M.V., 2014. Hedging of long term zero-coupon bonds in a market model with reinvestment risk. European Actuarial Journal 4, 49–75. Stephani, H., 1989. Differential Equations: Their Solution Using Symmetries. Cambridge University Press, Cambridge. Strikwerda, J.C., 2005. Finite Difference Schemes and Partial Differential Equations. second ed., SIAM Publications, Philadelphia. Tavella, D., Randall, C., 2000. Pricing Financial Instruments: The Finite Difference Method. John Wiley & Sons, New York. Teplova, T.V., Rodina, V.A., 2021. The reinvestment risk premium in the valuation of British and Russian government bonds. Research in International Business and Finance 55. Article 101319. Tewari, M., Byrd, A., Ramanlal, P., 2015. Callable bonds, reinvestment risk, and credit rating improvements: Role of the call premium. Journal of Financial Economics 115, 349–360. Thomée, V., 2006. Galerkin Finite Element Methods for Parabolic Problems. second ed., Springer-Verlag, Berlin. Topper, J., 2005. Financial Engineering with Finite Elements. John Wiley & Sons, Chichester. Verfürth, D., 2013. A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford, UK. Wei, X., Gaudenzi, M., Zanette, A., 2013. Pricing ratchet equity-indexed annuities with early surrender risk in a CIR++ model. North American Actuarial Journal 17, 229–252. Weibel, M., Luethi, D., Breymann, W., 2020. ghyp: Generalized Hyperbolic Distribution and Its Special Cases. URL: https://CRAN.R-project.org/package=ghyp. r package version 1.6.1. Windcliff, H., Forsyth, P.A., Vetzal, K.R., 2004. Analysis of the stability of the linear boundary condition for the Black-Scholes equation. Journal of Computational Finance 8, 65–92. Windcliff, H.A., Forsyth, P.A., Vetzal, K.R., 2006. Numerical methods and volatility models for valuing cliquet options. Applied Mathematical Finance 13, 353–386. Winkler, G., Apel, T., Wystup, U., 2002. Valuation of options in Heston’s stochastic volatility model using finite element models, in: Hakala, J., Wystup, U. (Eds.), Foreign Exchange Risk. Risk Books, London. URL: https://mathfinance.com/wp-content/uploads/2017/06/hestonfem.pdf. Yosida, K., 1980. Functional Analysis. sixth ed., Springer-Verlag, Berlin. Zhang, B., Oosterlee, C.W., 2013. An efficient pricing algorithm for swing options based on Fourier cosine expansions. Journal of Computational Finance 16, 1–32. |