English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51060067      Online Users : 940
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/136365
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136365


    Title: 利用VIX 指數和ARMA-GARCH 模型預測波動度之目標波動度策略績效分析
    Performance Analysis of Target Volatility Strategy using Realized Volatility and VIX Index and ARMA-GARCH Model
    Authors: 黃韋中
    Huang, Wei-Chung
    Contributors: 楊曉文
    黃韋中
    Huang, Wei-Chung
    Keywords: 時間序列
    VIX指數
    ARMA
    GARCH
    目標波動度策略
    Time series
    VIX Index
    ARMA
    GARCH
    Target-Volatility Strategy
    Date: 2021
    Issue Date: 2021-08-04 14:52:10 (UTC+8)
    Abstract: 本研究延伸Dachraoui (2018)提出之目標波動度策略,探討利用預測之標的波動度帶入其策略中是否能更有效地規避風險,並提升投資組合整體績效,因此,本研究納入及分析VIX 指數、GARCH 模型和ARMA-GARCH 模型所預測之波動度對投資組合之績效評估,並利用偏態、峰態、夏普比率、特雷諾比率、平均每週報酬、每週報酬波動度、最大跌幅來觀察策略之績效。本研究首先利用SPY ETF 1993 至2006 年作為GARCH 和ARMA-GARCH 模型之訓練樣本,並利用ADF檢定其報酬資料是否具穩定性,接著利用AIC、BIC 選取模型參數,接著將模型預測之波動度和歷史波動度、VIX 指數帶入目標波動度策略,並觀察SPY ETF 在2007 至2021 年利用歷史波動度、VIX 指數、GARCH 和ARMA-GARCH
    模型等不同波動度之波動度策略之績效,結果顯示利用VIX 指數之目標波動度策略在報酬率波動度、最大跌幅皆優於利用其他波動度之目標波動度策略,而利用GARCH 和ARMA-GARCH 模型之目標波動度策略能獲得最高的累積報酬,但同時也有較大的報酬率波動度和較大的最大跌幅。接著本研究將GARCH 和ARMA-GARCH 模型的訓練樣本設為2014 至2015 年,並將績效觀察期間設為2016 至2021 年,並納入另一標的QQQ ETF 作比較,結果發現不同的樣本期間 GARCH 和ARMA-GARCH 模型預測之波動度能為投資組合帶來較高的累積報酬,但同時其報酬率波動度和最大跌幅也較其他波動度之目標波動度策略來得大,而不論是SPY ETF 或是QQQ ETF,利用VIX 指數帶入目標波動度策略皆能大幅降低其最大跌幅,並獲得所有策略中最小的報酬率波動度。
    According to Dachraoui (2018), Target-Volatility Strategy can reduce the portfolio risk, and also increase the Sharpe Ratio. Extendedly, this paper uses VIX Index, GARCH and ARMA-GARCH Model to project the volatilities and combine each of them with Target-Volatility Strategy to see whether the performance is better or not. This paper uses skewness, kurtosis, Sharpe Ratio, Treynor Ratio, average weekly return, volatility of weekly return, maximum drawdown to observe the performance of the investment strategy. We first use SPY ETF daily closing price from 1993 to 2006 as the training set of GARCH and ARMA-GARCH Model, and then apply ADF Test to check whether the data is stationary. Secondly, this paper uses AIC、BIC to choose the parameter of the model, and then estimate the volatility of return. This paper compares Target-Volatility Strategy using four different volatility projected by different models including realized volatility, VIX Index, GARCH Model, ARMA-GARCH Model, and the results indicated that the strategy using VIX Index can reduce most of the risk during the period. On the other side, the strategy using GARCH and ARMA-GARCH Model owned the bigger return, but they also need to bear the biggest drawdown during the period. Lastly, this paper uses another ETF, QQQ ETF, as the risky asset, and the results were similar to the results of SPY ETF.
    Reference: [1] 洪儒瑤、古永嘉、康健廷(2006)。ARMA-GARCH 風險值模型預測績效實證。中華技術學院學報(34),頁 13-35。
    [2] 陳威光(2019)。金融創新與商品個案。新陸書局股份有限公司。
    [3] Agahan, J. S., Miral, C. B., & Ocampo, S. R. A Comparison of ARMA-GARCH and Bayesian SV Models in Forecasting Philippine Stock Market Volatility.
    [4] Auinger, F. (2015). The Causal Relationship between the S&P 500 and the VIX Index: Critical Analysis of Financial Market Volatility and Its Predictability: Springer.
    [5] Bantwa, A. (2017). A study on India volatility index (VIX) and its performance as risk management tool in Indian Stock Market. Paripex-Indian Journal of Research, 6(1).
    [6] Blitz, D. C., & Van Vliet, P. (2007). The volatility effect. The Journal of Portfolio Management, 34(1), 102-113.
    [7] Braga, M. D. (2015). Risk-based approaches to asset allocation: Concepts and practical applications: Springer.
    [8] Cardinale, M., Naik, N. Y., & Sharma, V. (2021). Forecasting long-horizon volatility for strategic asset allocation. The Journal of Portfolio Management, 47(4), 83-98.
    [9] Dachraoui, K. (2018). On the optimality of target volatility strategies. The Journal of Portfolio Management, 44(5), 58-67.
    [10] Dhamija, A., & Bhalla, V. (2010). Financial time series forecasting: comparison of various arch models. Global Journal of Finance and Management, 2(1), 159-172.
    [11] Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? Journal of applied econometrics, 20(7), 873-889.
    [12] McAlinn, K., Ushio, A., & Nakatsuma, T. (2020). Volatility forecasts using stochastic volatility models with nonlinear leverage effects. Journal of Forecasting, 39(2), 143-154.
    [13] Tang, H., Chiu, K.-C., & Xu, L. (2003). Finite mixture of ARMA-GARCH model for stock price prediction. Paper presented at the Proceedings of the Third International Workshop on Computational Intelligence in Economics and Finance (CIEF`2003), North Carolina, USA.
    [14] Wang, H. (2019). VIX and volatility forecasting: A new insight. Physica A: Statistical Mechanics and its Applications, 533, 121951.
    [15] Zhu, Y. (2018). Comparison of Three Volatility Forecasting Models. The Ohio State University.
    Description: 碩士
    國立政治大學
    金融學系
    108352029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108352029
    Data Type: thesis
    DOI: 10.6814/NCCU202100948
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202901.pdf2386KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback