Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/136362
|
Title: | 反向型ETF買賣超及指數期貨未平倉量淨變化對次日現貨報酬與波動之影響-非對稱GARCH模型於臺灣加權股價指數之應用 The Impact of Net Buy/Sell of Inverse ETFs and Net Changes in Index Futures Open Interest on the Next Day`s Spot Returns and Volatility-Application of Asymmetric GARCH in TAIEX |
Authors: | 孫茂程 Sun, Mao-Cheng |
Contributors: | 張興華 Chang, Hsing-Hua 孫茂程 Sun, Mao-Cheng |
Keywords: | 指數期貨 未平倉量 反向型ETF EGARCH Index futures Open interest Inverse ETFs EGARCH |
Date: | 2021 |
Issue Date: | 2021-08-04 14:51:29 (UTC+8) |
Abstract: | 本文以加入外生變數的EGARCH模型,分析臺灣加權股價指數 (TAIEX) 對於前一個交易日三大法人臺股期貨未平倉量淨變化及元大台灣50反1 ETF買賣超的反應關係,主要貢獻是補足2019年至今國內期貨未平倉量的文獻缺口,以及首次將反向型ETF納入現貨模型進行分析。由ARMA(2,2)-EGARCH(1,1) 模型的配適成果可知,在樣本期間內,外資指數期貨未平倉量的淨增加,自營商指數期貨未平倉量的淨減少,以及外資反向ETF買賣超的淨減少,對於次日大盤報酬具有正向影響;而外資指數期貨未平倉量的淨增加,投信指數期貨未平倉量的淨增加,以及外資反向ETF買賣超的淨減少,對於次日大盤波動具有反向影響,亦即能減緩次日盤勢的平均振幅。
GJR-GARCH的穩健性測試,並未推翻主要模型的配適成果。此外,藉由前後兩個子樣本期間的對照,發現指數期貨未平倉量對大盤的解釋能力逐漸降低,於此同時,反向型ETF的解釋能力則顯著提升,顯示這兩種受到投資人青睞且功能部分相似的工具,隨著時間經過可能產生某種互補或替代關係。投資人利用指數期貨未平倉量和反向型ETF買賣超作為次日大盤預測的指標,應具有一定的參考價值,惟金融市場的結構隨時間不斷變化,在運用此量能指標進行投資決策時,仍須定期檢視其與大盤的反應關係是否維持。 This article uses the EGARCH model with exogenous variables to analyze the response of the TWSE Capitalization Weighted Stock Index (TAIEX) to institutional investors’ net change in open interest of TX futures and net buy/sell of Yuanta Daily Taiwan 50 Bear -1X ETF (00632R.TW) in the previous trading day. The main contribution is to fill in the literature gap of the open interest of domestic index futures from 2019, and the first time the inverse ETF is included in the spot model.
According to the fitting results of the ARMA(2,2)-EGARCH(1,1) model, during the sample period, the net increase in foreign investors’ open interest in index futures and the net decrease in dealers’ open interest, and the foreign investors’ net sell in inverse ETF have a positive effect on the next day’s spot returns. The net increase in foreign investors open interest, the net increase in investment trusts’ open interest, and the foreign investors’ net sell in inverse ETF have a negative impact on the next day’s spot volatility. That is, it can slow down the average amplitude of the next day`s market.
The robustness test of GJR-GARCH did not reject the results of the main model. In addition, by comparing the two sub-sample periods, it is found that the explanatory power of the open interest of index futures on the spot market is gradually reduced. At the same time, the power of the inverse ETF has increased significantly, showing that these two tools with similar functions may have a complementary or substitute relationship. Investors use these indicators for the next day`s forecast, which should have a certain degree of reference. However, the structure of the financial market continues to change over time. When using this quantitative indicator to make investment decisions, it is necessary to regularly review whether its relationship with the spot market is maintained. |
Reference: | 方裕翔 (2017)。期貨未平倉量如何預測現貨報酬和波動度?。國立中央大學財務金融學系碩士論文。 何建緯 (2017)。外資台指期貨未平倉量對於市場報酬率的影響。國立中正大學財務金融研究所碩士論文。 呂宗達 (2018)。外資及自營商之臺股期貨及選擇權未平倉量對於加權指數之預測性。國立臺灣師範大學高階經理人企業管理碩士在職專班碩士論文。 李佩珊 (2016)。槓桿反向指數股票基金之避險績效分析。東吳大學財務工程與精算數學系碩士論文。 林展源 (2019)。反向型ETF與波動型ETF之避險績效-應用Copula-GJR-GARCH模型。國立政治大學國際經營與貿易學系研究所碩士論文。 黃翊綾 (2019)。三大法人買賣超、未平倉量與賣買權比率對台指現貨與期貨之影響與關聯性分析。國立屏東大學財務金融學系碩士班碩士論文。 葉祐齊 (2013)。機構或大額投資人未平倉量的變化,對於現貨報酬的影響具不對稱性。國立政治大學金融學系碩士班碩士論文。 蔡欣庭 (2015)。槓桿型與反向型ETF對市場投資組合效率性之分析。國立臺灣師範大學管理學院全球經營與策略研究所碩士論文。
Ahmed, H.J., Hassan A. and Nasir, A.M.D. (2005). The Relationship between Trading Volume, Volatility and Stock Market Returns: A test of Mixed Distribution Hypothesis for A Pre- and Post Crisis on Kuala Lumpur Stock Exchange. Investment Management and Financial Innovations, 2(3), 146-158. Bauwens, L. and Laurent, S. (2005). A New Class of Multivariate Skew Densities, with Application to GARCH Models. Journal of Business and Economic Statistics, 23(3), 346-354. Bessembinder, H. and Seguin, P.J. (1993). Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets. The Journal of Financial and Quantitative Analysis, 28(1), 21-39. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control. New Jerse: Wiley. Chen, N.F. and Cuny, C.J. and Haugen R.A. (1995). Stock Volatility and the Levels of the Basis and Open Interest in Futures Contracts. The Journal of Finance, 50(1), 281-300. Chovancová, B., Dorocáková, M. and Linnertová, D. (2019). Two Investment Options for Bearish ETF Investors: Inverse ETF and Shorting ETF. International Journal of Financial Studies, 7(2), 1-14. Dickey, D.A. and Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427-431. Engle, R.F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1008. Engle, R.F. and Ng, V.K. (1993). Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48(5), 1749-1778. Glosten, L.R., Jagannathan, R. and Runkle, D.E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779-1801. Gulen, H. and Mayhew, S. (2000). Stock Index Futures Trading and Volatility in International Equity Markets. The Journal of Futures Markets, 20(7), 661-685. Hansen, B.E. (1994). Autoregressive Conditional Density Estimation. International Economic Review, 35(3), 705-730. Hong, H. and Yogo, M. (2012). What Does Futures Market Interest Tell Us About The Macroeconomy and Asset Prices?. Journal of Financial Economics, 105, 473-490. Jiang, W. (2012). Using the GARCH model to analyze and predict the different stock markets. (Unpublished master`s thesis), Uppsala University, Sweden. Lee, K.S. and Kim, S.H. (2018). Do Leverage/Inverse ETFs Wag The Underlying Market? Evidence From The Korean Stock. Hitotsubashi Journal of Economics, 59, 83-94. Ljung, G.M. and Box, G.E.P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297-303. Nelson, D.B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370. Olbryś, J. (2013). Asymmetric Impact of Innovations on Volatility in the Case of the US and CEEC–3 Markets: EGARCH Based Approach. Dynamic Econometric Models, 13, 33-50. Phillips, P.C.B. and Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75(2), 335-346. Said, S.E. and Dickey, D.A. (1984). Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika, 71(3), 599-607. |
Description: | 碩士 國立政治大學 金融學系 108352021 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108352021 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202100666 |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
202101.pdf | | 2833Kb | Adobe PDF2 | 134 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|