English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50754888      Online Users : 543
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/136349
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136349


    Title: 最佳匹配法與序列分群:電商用戶行為與運輸物流的分析
    Optimal Matching & Sequence Clustering: Analyses of E-Commerce User Behaviors & Delivery Logistics
    Authors: 楊鈞宜
    Yang, Jiun-Yi
    Contributors: 莊皓鈞
    周彥君

    Chuang, Hao-Chun
    Chou, Yen-Chun

    楊鈞宜
    Yang, Jiun-Yi
    Keywords: 分群
    用戶行為
    序列
    序列分群
    最佳匹配法
    物流進程
    編輯距離
    相異度矩陣
    optimal matching algorithm
    sequence data
    clustering
    user behavior
    delivery logistics
    edit distance
    dissimilarity matrix
    Date: 2021
    Issue Date: 2021-08-04 14:48:43 (UTC+8)
    Abstract: 研究動機與目的:精準行銷成效取決於消費者標籤的精準程度,而消費者分群效果受到序列資料特徵、所使用的距離計算方法等因素影響;本研究以實務案例驗證,導入不同的序列距離計算方式,是否有助於萃取消費者行為資訊差異並優化其分群效果。

    研究方法:透過狀態序列轉換後,導入最佳匹配法計算序列相異度矩陣,最後分群觀察序列狀態分布比例圖表,並計算兩群間特徵指標統計顯著性,以驗證分群所得之群體特徵具有顯著差異。

    研究應用場景:只要有時間戳記的日誌格式資料,透過狀態定義形成序列後,皆可以導入最佳匹配法運算出特徵,並用於分群、分類等不同算法中。

    研究貢獻:本研究以「電商用戶行為序列分群」及「物流進程序列分群」兩案例,實證最佳匹配法所運算產生之特徵,相較於事件次數累計,更有助於提高分群多樣性,且能使分群群體特徵指標間產生顯著差異。
    Motivation and purpose: Ecommerce advertising retargeting performance highly depends on the quality of audience cluster tagging, and the cluster quality is affected by different sequence features transform methods. Our research aimed to validate that whether using optimal matching to generate sequence dissimilarity increased the diversity and significance of clustering results. Furthermore, we also discussed sequence clustering use cases in delivery logistics satisfaction to compare different scenario of sequence clustering.

    Research method: First, we convert log data to state sequences, then compute sequence dissimilarity matrix using optimal matching algorithm. Last, run clustering algorithm and observe the state distribution plot among different clusters, with the results of Kruskal-Wallis significance test to validate that significant difference exists between key metrics of those two clusters.

    Implement scenario: As long as there’s log format data with timestamps, we can transform it into state sequences through state definition, then generate dissimilarity matrix as a feature used in clustering, classification and other algorithms for increasing performance.

    Research value: Our research validated that generating sequence dissimilarity by optimal matching algorithm not only increased the diversity of clustering results with more user pattern observed, but also segmented significantly different types of clusters using only state sequences data. Besides, we perform two analyses to show the entire process from data transformation, modeling and visualization.
    Reference: [1] 普華永道會計師事務所。(民 108 年)。2019 全球消費者洞察報告。民 109 年 6 月 28 日,取自:https://www.pwc.tw/zh/publications/global-insights/2019-consumer- insights.html
    [2] Google/Ipsos. (2017). Shopping Tracker. Retrieved June 28, 2020 from: https://www.thinkwithgoogle.com/data/us-shopping-behavior-statistics/
    [3] Chen, Y., Fan, C., Li, Z., & Ren, L. (2020). Research on the Relationship between Precision Marketing and Company Development Ability. 2nd International Conference on Big-data Service and Intelligent Computation (BDSIC 2020). Association for Computing Machinery, New York, NY, USA, 42–48. DOI: https://doi.org/10.1145/3440054.3440062
    [4] 劉洪偉、梁周揚、左妹華、陸丹、范夢婷、何銳超(民 108 年)。利用消費者瀏 覽行為識別品牌競爭關係研究。廣東工業大學學報,36(05),1-6,13。DOI:
    https://doi.org/10.12052/gdutxb.190063
    [5] Verheijden, R.M.C. (2012). Predicting purchasing behavior throughout the clickstream. DOI: https://research.tue.nl/en/studentTheses/predicting-purchasing-behavior-throughout-the- clickstream
    [6] 何銳超、劉洪偉、高鴻銘、范夢婷、詹明君(民 109 年)。基於點擊流與 PROMETHEE多屬性決策法的電子商務消費者購買意願預測。廣東工業大學學報, 37(06),32-40。DOI: http://dx.doi.org/10.12052/gdutxb.200029
    [7] Koehn, D., Lessmann, S., & Schaal, M. (2020). Predicting online shopping behaviour from clickstream data using deep learning. Expert Systems with Applications, Vol. 150, 2020, 113342, ISSN 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2020.113342
    [8] Wang, G., Zhang, X., Tang, S., Zheng, H., & Zhao, B. Y. (2016). Unsupervised Clickstream Clustering for User Behavior Analysis. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI `16). Association for Computing Machinery, New York, NY, USA, 225–236. DOI: https://doi.org/10.1145/2858036.2858107
    [9] 張鴻萍(民 106 年)。基於時間序列交易數據的服裝電商客戶分類研究。現代管理,7,6。DOI: https://m.hanspub.org/journal/paper/23238#ref2
    [10] Su, Q., & Chen, L. (2015). A method for discovering clusters of e-commerce interest patterns using click-stream data. Electronic Commerce Research and Applications, Vol. 14, Issue 1, 2015, 1-13, ISSN 1567-4223. DOI: https://doi.org/10.1016/j.elerap.2014.10.002
    [11] Wei, J., Shen, Z., Sundaresan, N., & Ma, K. L. (2012). Visual cluster exploration of web clickstream data. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 2012, 3-12, DOI: https://doi.org/10.1109/VAST.2012.6400494
    [12] Luu, V. T., Forestier, G., Weber, J., Bourgeois, P., Djelil, F & Muller, P. A. (2020). A review of alignment based similarity measures for web usage mining. Artif Intell
    Rev 53, 1529–1551. DOI: https://doi.org/10.1007/s10462-019-09712-9
    [13] Mandal, O.P., & Azad, H. K. (2014). Web Access Prediction Model using Clustering and Artificial Neural Network. International journal of engineering research and technology, 3. DOI: https://api.semanticscholar.org/CorpusID:61917769.
    [14] Deza, M. M., & Deza, E. (2013). Distances and Similarities in Data Analysis. In: Encyclopedia of Distances. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3- 642-30958-8_17
    [15] Poornalatha, G., & Raghavendra, P. S. (2011). Web User Session Clustering Using Modified K-Means Algorithm. In: Abraham A., Lloret Mauri J., Buford J.F., Suzuki J., Thampi S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, Vol. 191. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-22714-1_26
    [16] Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(03), 443–453. DOI: https://doi.org/10.1016/0022-2836(70)90057-4
    [17] Abbott, A., & Forrest, J. (1986). Optimal Matching Methods for Historical Sequences. The Journal of Interdisciplinary History, 16(3), 471-494. DOI: https://doi.org/10.2307/204500
    [18] Flöthmann, C., & Hoberg, K. (2017). Career Patterns of Supply Chain Executives: An Optimal Matching Analysis. Journal of Business Logistics, 38, 35-54. DOI: https://doi.org/10.1111/jbl.12150
    [19] Kaushik, M., & Mathur, B. (2014). Comparative Study of K-Means and Hierarchical Clustering Techniques. Internatioonal journal of Software and Hardware Research in Engineering, 2, 6, 93-98. DOI: http://ijournals.in/wp-content/uploads/2017/07/IJSHRE- 2653.compressed.pdf
    [20] Roger, J(無日期)。3-2 Hierarchical Clustering(階層式分群法)。Data Clustering and Pattern Recognition(資料分群與樣式辨認)。Chap. 3-2。民 110 年 2 月 7 日,取自:http://mirlab.org/jang/books/dcpr/dcHierClustering.asp?title=3- 2%20Hierarchical%20Clustering%20(%B6%A5%BCh%A6%A1%A4%C0%B8s%AAk)&l anguage=chinese
    [21] 卓明宏(無日期)。機率式重分配的模擬退火 K-means 演算法。民 110 年 2 月 7 日,取自:https://ir.nctu.edu.tw/bitstream/11536/78190/2/355203.pdf
    [22] Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, Vol 11, Issue 1, 40–56, ISSN 1309-1042, DOI: https://doi.org/10.1016/j.apr.2019.09.009
    [23] Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58:301, 236–
    244, DOI: https://doi.org/10.1080/01621459.1963.10500845
    [24] K-平均算法(無日期)。維基百科。民 110 年 2 月 7 日,取自: https://zh.wikipedia.org/w/index.php?title=K- %E5%B9%B3%E5%9D%87%E7%AE%97%E6%B3%95&oldid=64158237
    [25] Loss Dragon(民 108 年 1 月 18 日)。數據挖掘入門筆記—K-Medoids【投 稿】。知乎專欄。民 110 年 3 月 20 日,取自:https://zhuanlan.zhihu.com/p/55163617
    [26] Studer, M., & Ritschard, G. (2016), What matters in differences between life trajectories: a comparative review of sequence dissimilarity measures. J. R. Stat. Soc. A, 179: 481-511. DOI: https://doi.org/10.1111/rssa.12125
    [27] Gabadinho, A., Ritschard, G., Müller, N., & Studer, M. (2011). Analyzing and Visualizing State Sequences in R with TraMineR. Journal of Statistical Software, 40(4), 1 - 37. DOI: http://dx.doi.org/10.18637/jss.v040.i04
    [28] Hollister, M. (2009). Is Optimal Matching Suboptimal? Sociological Methods & Research, 38(2), 235–264. DOI: https://doi.org/10.1177/0049124109346164
    [29] Halpin, B. (2010). Optimal Matching Analysis and Life-Course Data: The Importance of Duration. Sociological Methods & Research, 38(3), 365–388. DOI: https://doi.org/10.1177/0049124110363590
    [30] Biemann, T. (2011). A Transition-Oriented Approach to Optimal Matching. Sociological Methodology, 41(1), 195–221. DOI: https://doi.org/10.1111/j.1467- 9531.2011.01235.x
    [31] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, Vol. 20, 53-65, ISSN 0377-0427, DOI: https://doi.org/10.1016/0377-0427(87)90125-7
    [32] 天貓複購預測之挑戰 Baseline – 阿里雲天池(每賽季更新)【資料檔】。天貓商 城 Tmall.com。民 108 年 6 月 1 日,取自: https://tianchi.aliyun.com/competition/entrance/231576/information
    [33] Dlouhy, K., & Biemann, T. (2015). Optimal Matching Analysis in Career Research: A Review and Some Best-practice Recommendations. Journal of Vocational Behavior, 90, 163- 173. DOI: https://doi.org/10.1016/J.JVB.2015.04.005
    Description: 碩士
    國立政治大學
    資訊管理學系
    108356035
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108356035
    Data Type: thesis
    DOI: 10.6814/NCCU202100754
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603501.pdf8966KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback