English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753136      Online Users : 506
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/136339
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136339


    Title: 基於多數決的不當訊息分析學習系統
    A majority-based learning system for analyzing misinformation
    Authors: 高翰君
    Kao, Han-Chun
    Contributors: 杜雨儒
    Tu, Yu-Ju
    高翰君
    Kao, Han-Chun
    Keywords: 不當訊息
    資訊系統
    機器學習
    假新聞
    業配文
    原生廣告
    抄襲文
    Misinformation
    Information system
    machine learning
    fake news
    advertorial
    native advertising
    plagiarism
    Date: 2021
    Issue Date: 2021-08-04 14:46:35 (UTC+8)
    Abstract: 自過去的十年以來,不當訊息的問題引起了人們的廣泛關注。 直到最近,這個問題變得比以往更具挑戰性,其中一原因來自於covid-19大流行在世界各地蔓延。 在這項研究中,我們表明不當訊息是由三個主要部分構成的:假新聞、業配文和抄襲文。 此外,本研究提出了一種系統,透過整合多種機器學習方法的優勢,以提高不當訊息自主檢測的性能。
    Since the past decade, the problem of misinformation has drawn considerable attention. Recently, this problem becomes much more challenging, largely because the covid-19 pandemic unfortunately spread around the world. In this study, we show that misinformation is constructed by three main components: fake news, advertorial and plagiarism. Furthermore, we propose a system to combine the strengths of multiple machine learning approaches to improve the performance of autonomous detection of misinformation.
    Reference: 1. Advertorial. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/2983.
    2. Ahmed, H., Traore, I., & Saad, S. (2018). Detecting opinion spams and fake news using text classification. Security and Privacy, 1(1), e9.
    3. Akhtar, M. S., Ekbal, A., Narayan, S., Singh, V., & Cambria, E. (2018). No, that never happened!! Investigating rumors on Twitter. IEEE Intelligent Systems, 33(5), 8-15.
    4. Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.
    5. Alzahrani, S. M., Salim, N., & Abraham, A. (2011). Understanding plagiarism linguistic patterns, textual features, and detection methods. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 133-149.
    6. Atallah, R., & Al-Mousa, A. (2019, October). Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method. In 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS) (pp. 1-6). IEEE.
    7. Bakker, P. (2012). Aggregation, content farms and Huffinization: The rise of low-pay and no-pay journalism. Journalism practice, 6(5-6), 627-637.
    8. Bär, D., Zesch, T., & Gurevych, I. (2012). Text reuse detection using a composition of text similarity measures. Proceedings of COLING 2012, 167-184.
    9. Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G., & Quattrociocchi, W. (2015). Science vs conspiracy: Collective narratives in the age of misinformation. PloS one, 10(2), e0118093.
    10. Bhagavatula, S., Dunn, C., Kanich, C., Gupta, M., & Ziebart, B. (2014, November). Leveraging machine learning to improve unwanted resource filtering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop (pp. 95-102).
    11. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    12. Burrows, S., Potthast, M., & Stein, B. (2013). Paraphrase acquisition via crowdsourcing and machine learning. ACM Transactions on Intelligent Systems and Technology (TIST), 4(3), 1-21.
    13. Cameron, G. T., & Ju-Pak, K. H. (2000). Information pollution?: Labeling and format of advertorials. Newspaper Research Journal, 21(1), 65-76.
    14. Cameron, G. T., Ju-Pak, K. H., & Kim, B. H. (1996). Advertorials in magazines: Current use and compliance with industry guidelines. Journalism & Mass Communication Quarterly, 73(3), 722-733.
    15. Campbell, C., & Marks, L. J. (2015). Good native advertising isn’ta secret. Business Horizons, 58(6), 599-606.
    16. Castillo, C., Mendoza, M., & Poblete, B. (2011, March). Information credibility on twitter. In Proceedings of the 20th international conference on World wide web (pp. 675-684).
    17. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
    18. Chitra, A., & Rajkumar, A. (2016). Plagiarism detection using machine learning-based paraphrase recognizer. Journal of Intelligent Systems, 25(3), 351-359.
    19. Clough, P. (2003). Old and new challenges in automatic plagiarism detection. In National Plagiarism Advisory Service, 2003; http://ir. shef. ac. uk/cloughie/index. html.
    20. Dadgar, S. M. H., Araghi, M. S., & Farahani, M. M. (2016, March). A novel text mining approach based on TF-IDF and Support Vector Machine for news classification. In 2016 IEEE International Conference on Engineering and Technology (ICETECH) (pp. 112-116). IEEE.
    21. Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., ... & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559.
    22. Disinformation. (2020) In Cambridge dictionary, Cambridge University Press. Retrieved from https://dictionary.cambridge.org/us/dictionary/english/disinformation
    23. Doerr, B., Fouz, M., & Friedrich, T. (2012). Why rumors spread so quickly in social networks. Communications of the ACM, 55(6), 70-75.
    24. Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 155-161.
    25. Eiselt, M. P. B. S. A., & Rosso, A. B. C. P. (2009). Overview of the 1st international competition on plagiarism detection. In 3rd PAN Workshop. Uncovering Plagiarism, Authorship and Social Software Misuse (p. 1).
    26. Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104.
    27. Fix, E., & Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination: Small sample performance.
    28. Ellerbach, J. (2004). The advertorial as information pollution. Journal of information ethics, 61.
    29. Fake news. (2020) In OED Online, Oxford University Press. Retrieved from https://www.oed.com/view/Entry/67776.
    30. Frank, T. (2011). Bright Frenetic Mills. Will the Last Reporter Turn Out the Lights, ed. Robert W. McChesney and Victor Pickard (New York: The New Press, 2011), 114.
    31. Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014, May). Rumor cascades. In Eighth international AAAI conference on weblogs and social media.
    32. Gelfert, A. (2018). Fake news: A definition. Informal Logic, 38(1), 84-117.
    33. Gilda, S. (2017, December). Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15th Student Conference on Research and Development (SCOReD) (pp. 110-115). IEEE.
    34. Gupta, A., Lamba, H., Kumaraguru, P., & Joshi, A. (2013, May). Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In Proceedings of the 22nd international conference on World Wide Web (pp. 729-736).
    35. Helmstetter, S., & Paulheim, H. (2018, August). Weakly supervised learning for fake news detection on Twitter. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 274-277). IEEE.
    36. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    37. Janze, C., & Risius, M. (2017). Automatic Detection of Fake News on Social Media Platforms. PACIS, 261.
    38. Jin, F., Dougherty, E., Saraf, P., Cao, Y., & Ramakrishnan, N. (2013, August). Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th workshop on social network mining and analysis (pp. 1-9).
    39. Jin, Z., Cao, J., Zhang, Y., Zhou, J., & Tian, Q. (2016). Novel visual and statistical image features for microblogs news verification. IEEE transactions on multimedia, 19(3), 598-608.
    40. Kim, B. H., Pasadeos, Y., & Barban, A. (2001). On the deceptive effectiveness of labeled and unlabeled advertorial formats. Mass Communication & Society, 4(3), 265-281.
    41. Kwon, S., Cha, M., & Jung, K. (2017). Rumor detection over varying time windows. PloS one, 12(1), e0168344.
    42. Lam, L., & Suen, C. Y. (1995). Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9), 945-954.
    43. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Schudson, M. (2018). The science of fake news. Science, 359(6380), 1094-1096.
    44. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1245-1254).
    45. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2011). Learning to detect malicious urls. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-24.
    46. Ma, Wei-Yun and Keh-Jiann Chen, 2003, "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff", Proceedings of ACL, Second SIGHAN Workshop on Chinese Language Processing, pp168-171
    47. Matt Cutts. (2011, Jan 21). Google search and search engine spam [Blog post]. Retrieved from https://googleblog.blogspot.com/2011/01/google-search-and-search-engine-spam.html
    48. Maurer, H. A., Kappe, F., & Zaka, B. (2006). Plagiarism-A survey. J. UCS, 12(8), 1050-1084.
    49. McCreadie, R., Macdonald, C., Ounis, I., Giles, J., & Jabr, F. (2012, October). An examination of content farms in web search using crowdsourcing. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 2551-2554).
    50. Misinformation. (2020)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/misinformation
    51. Opinion. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/opinion
    52. Ozbay, F. A., & Alatas, B. (2020). Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications, 540, 123174.
    53. Parikh, S. B., & Atrey, P. K. (2018, April). Media-rich fake news detection: A survey. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 436-441). IEEE.
    54. Plagisrism. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/144939
    55. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638.
    56. Propaganda. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/propaganda
    57. Rahman, A. F. R., Alam, H., & Fairhurst, M. C. (2002, August). Multiple classifier combination for character recognition: Revisiting the majority voting system and its variations. In International Workshop on Document Analysis Systems (pp. 167-178). Springer, Berlin, Heidelberg.
    58. Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., & Nandi, A. K. (2018). Credit card fraud detection using AdaBoost and majority voting. IEEE access, 6, 14277-14284.
    59. Reis, J. C., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2), 76-81.
    60. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
    61. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
    62. Saltz, H. (1995). Advertorial lies. Editor & Publisher, 128(36), 48-49.
    63. Shih, L. K., & Karger, D. R. (2004, May). Using urls and table layout for web classification tasks. In Proceedings of the 13th international conference on World Wide Web (pp. 193-202).
    64. Shores, M. (2019). The Rise of Content Farms.
    65. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
    66. Sun, J., & Li, H. (2008). Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 35(3), 818-827.
    67. Szczepański, P. L., Wiśniewski, A., & Gerszberg, T. (2013). An automated framework with application to study URL based online advertisements detection. Journal of Applied Mathematics, Statistics and Informatics, 9(1), 47-60.
    68. Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153.
    69. Tsai, C. F., Lin, Y. C., Yen, D. C., & Chen, Y. M. (2011). Predicting stock returns by classifier ensembles. Applied Soft Computing, 11(2), 2452-2459.
    70. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151.
    71. Wang, B., Kim, S., & Malthouse, E. C. (2016). Branded apps and mobile platforms as new tools for advertising. The new advertising: Branding, content, and consumer relationships in the data-driven social media era, 2, 123-156.
    72. What is Plagiarism? (2017, May 18). Retrieved from https://plagiarism.org/article/what-is-plagiarism
    73. Williamson, P. (2016). Take the time and effort to correct misinformation. Nature, 540(7632), 171-171.
    74. Zhou, X., & Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315.
    Description: 碩士
    國立政治大學
    資訊管理學系
    108356004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108356004
    Data Type: thesis
    DOI: 10.6814/NCCU202100686
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    600401.pdf2466KbAdobe PDF265View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback