政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136323
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51347756      Online Users : 794
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136323


    Title: 基於混合廣義伽瑪分配之顧客購買間隔時間模型
    Customer interpurchase-­time models based on mixture generalized gamma distributions
    Authors: 柯瀚鈞
    Ke, Han-Jun
    Contributors: 黃子銘
    Huang, Tzee-Ming
    柯瀚鈞
    Ke, Han-Jun
    Keywords: 購買間隔時間
    混合模型
    乘法模型
    馬可夫鏈
    interpurchase times
    mixture model
    multiplicative model
    Markov chain
    Date: 2021
    Issue Date: 2021-08-04 14:42:59 (UTC+8)
    Abstract:   本論文以廣義伽瑪分配作為顧客購買間隔時間之母體分配,建立混合模型推估顧客處於非常活躍、活躍及非活躍狀態的比例,並導入乘法模型探討商品類型在各狀態下對購買間隔時間的影響。除此之外,運用馬可夫鏈的特性建立轉移矩陣收集顧客狀態轉移的變化,並考慮多組馬可夫鏈模型以更精準的捕捉顧客消費行為。資料驗證方面,生成模擬資料以最大概似估計法及是否考慮最大期望演算法估計上述模型之參數來檢視估計優劣,並以 kaggle 中的網路商城交易資料來展現本文方法運用在實際資料的成果。根據模擬實驗顯示,考慮最大期望演算法估計結果較優異但所耗費的時間較長,不使用最大期望演算法估計結果相對較差,然而計算時間則大幅減少。
    In this thesis, a model for customer interpurchase times is proposed, where the generalized gamma distribution is used. In the proposed model, each customer has three states: very active, active and inactive state, and interpurchase times of a customer at different state may obey different distributions. The impact of product types on the interpurchase times is also considered. In addition, the customer states are allowed to change overtime, according to a Markov chain model. Model parameters are estimated using maximum likelihood estimation and consider whether to adopt the expectationmaximization algorithm. According to simulation experiments, using the expectation­maximization algorithm gives a better result but takes a longer
    time, the result without using the expectation­maximization algorithm is relatively poor, but the calculation time is greatly reduced.
    Reference: Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.
    Allenby, G. M., Leone, R. P., & Jen, L. (1999). A dynamic model of purchase timing with application to direct marketing. Journal of the American Statistical Association, 94(446), 365–374.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.
    Giraud, C. (2015). Introduction to high­dimensional statistics. Monographs on Statistics and Applied Probability, 139, 139.
    Hughes, A. M. (1994). Strategic database marketing. Chicago: Probus Publishing Company.
    Markov, A. A. (1971). Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Dynamic probabilistic systems, 1, 552–577.
    Schwarz, G., et al. (1978). Estimating the dimension of a model. Annals of statistics, 6(2), 461–464.
    Stacy, E. W., et al. (1962). A generalization of the gamma distribution. The Annals of mathematical statistics, 33(3), 1187–1192.
    Wilks, S. S. (1938). The large­sample distribution of the likelihood ratio for testing composite hypotheses. The annals of mathematical statistics, 9(1), 60–62.
    郭瑞祥, 蔣明晃, 陳薏棻, & 楊凱全. (2009). 應用層級貝氏理論於跨商品類別之顧客購買期間預測模型. 管理學報, 26(3), 291–308.
    林倉億. (2014). 「轉移矩陣」二三事 (2):歷年高中課本中的穩定狀態. HPM 通訊, 17(6).
    Description: 碩士
    國立政治大學
    統計學系
    108354022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108354022
    Data Type: thesis
    DOI: 10.6814/NCCU202100840
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File Description SizeFormat
    402201.pdf1200KbAdobe PDF241View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback