Reference: | [1] Alt, F. B. (1985). Multivariate Quality Control, in Encyclopedia of Statistical Sciences, Vol. 6, 110-122. [2] Amin, R. W., Reynolds Jr, M. R., & Saad, B. (1995). Nonparametric quality control charts based on the sign statistic. Communications in Statistics-Theory and Methods, 24(6), 1597-1623. [3] Aparisi, F., Epprecht, E. K., & Ruiz, O. (2012). T2 control charts with variable dimension. Journal of quality technology, 44(4), 375-393. [4] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks. Quality Engineering, 16(4), 613-623. [5] Bakir, S. T. (2006). Distribution-free quality control charts based on signed-rank-like statistics. Communications in Statistics-Theory and Methods, 35(4), 743-757. [6] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538. [7] Capizzi, G., & Masarotto, G. (2017). Phase I distribution-free analysis of multivariate data. Technometrics, 59(4), 484-495. [8] Chakraborti, S., & Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs. Communications in Statistics—Simulation and Computation®, 36(2), 335-356. [9] Chakraborti, S., & Van de Wiel, M. A. (2008). A nonparametric control chart based on the Mann-Whitney statistic (pp. 156-172). Institute of Mathematical Statistics. [10] Cheng, C. R., & Shiau, J. J. H. (2015). A distribution‐free multivariate control chart for phase I applications. Quality and Reliability Engineering International, 31(1), 97-111. [11] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459. [12] Chou, Y. M., Polansky, A. M., & Mason, R. L. (1998). Transforming non-normal data to normality in statistical process control. Journal of Quality Technology, 30(2), 133-141. [13] Costa, A. F., & Machado, M. A. (2008). A new chart for monitoring the covariance matrix of bivariate processes. Communications in Statistics—Simulation and Computation®, 37(7), 1453-1465. [14] Costa, A. F. B., & Machado, M. A. G. (2009). A new chart based on sample variances for monitoring the covariance matrix of multivariate processes. The International Journal of Advanced Manufacturing Technology, 41(7-8), 770-779. [15] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303. [16] Das, N. (2008). Non-parametric control chart for controlling variability based on rank test. [17] Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 927-939. [18] Douglas M. Hawkins & Edgard M. Maboudou-Tchao (2008) Multivariate Exponentially Weighted Moving Covariance Matrix, Technometrics, 50:2, 155-166. [19] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282. [20] Farokhnia, M., & Niaki, S. T. A. (2020). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 49(7), 1815-1838. [21] Ghute, V. B., & Shirke, D. T. (2008). A multivariate synthetic control chart for process dispersion. Quality Technology & Quantitative Management, 5(3), 271-288. [22] Haq, A., & Sohrab, K. (2021). Directionally sensitive MCUSUM mean charts. Quality and Reliability Engineering International. [23] Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75. [24] Holmes, D. S., & Mergen, A. E. (1993). Improving the performance of the T2 control chart. Quality Engineering, 5(4), 619-625. [25] Hotelling, H. (1947) Multivariate quality control-illustrated by the air testing of sample bombsights, Techniques of Statistical Analysis, Eisenhart, C., Hastay, M.W. and Wallis, W.A. (eds), McGraw-Hill, New York, NY, pp. 111–184. [26] Huwang, L., Lin, P. C., Chang, C. H., Lin, L. W., & Tee, Y. S. (2017). An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index. Quality and Reliability Engineering International, 33(8), 2089-2104. [27] Huwang, L., Lin, L. W., & Yu, C. T. (2019). A spatial rank–based multivariate EWMA chart for monitoring process shape matrices. Quality and Reliability Engineering International, 35(6), 1716-1734. [28] Jackson, J. E. (1959). Quality Control Methods for Several Related Variables, Technometrics,Vol. 1(4),pp. 359–377. [29] Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151. [30] Khilare, S. K., & Shirke, D. T. (2012). Nonparametric synthetic control charts for process variation. Quality and Reliability Engineering International, 28(2), 193-202. [31] Krupskii, P., Harrou, F., Hering, A. S., & Sun, Y. (2020). Copula-based monitoring schemes for non-Gaussian multivariate processes. Journal of Quality Technology, 52(3), 219-234. [32] Li, B., Wang, K., & Yeh, A. B. (2013). Monitoring the covariance matrix via penalized likelihood estimation. IIE Transactions, 45(2), 132-146. [33] Li, C., & Mukherjee, A. (2021). Two economically optimized nonparametric schemes for monitoring process variability. Quality and Reliability Engineering International. [34] Li, Z., Zou, C., Wang, Z., & Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165. [35] Li, Z., Xie, M., & Zhou, M. (2018). Rank-based EWMA procedure for sequentially detecting changes of process location and variability. Quality Technology & Quantitative Management, 15(3), 354-373. [36] Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions. Quality Technology & Quantitative Management, 16(1), 113-127. [37] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53. [38] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE transactions, 27(6), 800-810. [39] Malela-Majika, J. C. (2021). New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic. Quality Technology & Quantitative Management, 18(2), 135-155. [40] Malela-Majika, J. C., Chakraborti, S., & Graham, M. A. (2016). Distribution-free Phase II Mann–Whitney control charts with runs-rules. The International Journal of Advanced Manufacturing Technology, 86(1), 723-735. [41] Michael, M. C., & Johnston, A. (2008). Secom Data Sets of UCI Machine Learning Repository. [42] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions (Vol. 26, pp. 427-435). [43] Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons. [44] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. [45] Perry, M. B., & Wang, Z. (2020). A distribution-free joint monitoring scheme for location and scale using individual observations. Journal of Quality Technology, 1-18. [46] Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of quality technology, 22(3), 173-186. [47] Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50(1), 49-65. [48] Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). Charts with variable sampling intervals. Technometrics, 30(2), 181-192. [49] Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 2(3), 117-119. [50] Shewhart, W. A. (1931). Economic control of quality of manufactured product. Macmillan And Co Ltd, London. [51] Scrucca, L. (2013). GA: a package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1-37. [52] Stoumbos, Z. G., Reynolds Jr, M. R., Ryan, T. P., & Woodall, W. H. (2000). The state of statistical process control as we proceed into the 21st century. Journal of the American Statistical Association, 95(451), 992-998. [53] Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate control charts for individual observations. Journal of quality technology, 24(2), 88-95. [54] Wang, S., & Reynolds Jr, M. R. (2013). A GLR control chart for monitoring the mean vector of a multivariate normal process. Journal of Quality Technology, 45(1), 18-33. [55] Xue, L., & Qiu, P. (2020). A nonparametric CUSUM chart for monitoring multivariate serially correlated processes. Journal of Quality Technology, 1-14. [56] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), 1410-1427. [57] Yang, S. F., & Arnold, B. C. (2014). A simple approach for monitoring business service time variation. The Scientific World Journal, 2014. [58] Yang, S. F., & Arnold, B. C. (2016). Monitoring process variance using an ARL‐unbiased EWMA‐p control chart. Quality and Reliability Engineering International, 32(3), 1227-1235. [59] Yang, S. F., & Jiang, T. A. (2019). Service quality variation monitoring using the interquartile range control chart. Quality Technology & Quantitative Management, 16(5), 613-627. [60] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243. [61] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International. [62] Yang, S. F., & Wu, S. H. (2017). A double sampling scheme for process variability monitoring. Quality and Reliability Engineering International, 33(8), 2193-2204. [63] Yeh, A.B., Lin, D. K. J., Zhou, H. and Venkataramani, C. (2003). A multivariate exponentially moving average control chart for monitoring process variability. Journal of Applied Statistics, 30: 507–536. [64] Yen, C. L., & Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 1683-1707. [65] Yen, C. L., Shiau, J. J. H., & Yeh, A. B. (2012). Effective control charts for monitoring multivariate process dispersion. Quality and Reliability Engineering International, 28(4), 409-426. [66] Zhou, M., Zhou, Q., & Geng, W. (2016). A new nonparametric control chart for monitoring variability. Quality and Reliability Engineering International, 32(7), 2471-2479. [67] Zou, C., & Tsung, F. (2010). Likelihood ratio-based distribution-free EWMA control charts. Journal of Quality Technology, 42(2), 174-196. |