English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50965144      Online Users : 951
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/136318
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136318


    Title: 以主成分分析法建立製程共變異數矩陣管制圖之研究
    The Study of Covariance Matrix Control Chart Based on the Principal Component Analysis Method
    Authors: 簡廷安
    Chien, Ting-An
    Contributors: 楊素芬
    Yang, Su-Fen
    簡廷安
    Chien, Ting-An
    Keywords: 多維度管制圖
    主成分分析方法
    符號管制圖
    平均連串長度
    維度變動
    調整後的管制圖偵測出異常訊息的平均時間
    Adjusted average time to signal
    Average run length
    Multivariate control chart
    Principal component analysis
    Sign chart
    Variable dimension
    Date: 2021
    Issue Date: 2021-08-04 14:41:58 (UTC+8)
    Abstract: 在監測製造過程中,管制圖是經常使用的手法,現今蒐集到的資料多是高維度且來自未知的分配,使得多維度且無分配假設的管制圖之研究變得更加重要。本文提出一個監控製程共變異數矩陣的管制圖,在母體分配未知或是來自非常態時,使用主成分分析方法 (PCA) 結合符號管制圖 (sign chart) 建立多元製程共變異數矩陣管制圖,並且以平均連串長度 (ARL) 做為衡量此管制圖在製程失控時的偵測能力的指標。此外,本文進一步考慮變動維度 (VD) 的想法,以減少在監測失控製程中的所需偵測時間及抽樣成本,本文採調整後的管制圖偵測出異常訊息的平均時間 (AATS) 來評估管制圖表現。
    本文與文獻上存在的管制圖偵測能力比較,結果發現提出的管制圖在抽樣樣本數為5且製程的共變異數或相關係數發生小幅度偏移時有較好的偵測能力,最後以半導體製程資料及礫石資料說明所提出的管制圖的應用。
    The control chart is a widely used approach to monitor manufacturing processes. In the era big data, most of the collected data are high dimensional from an unknown distribution. In statistical process control (SPC), the effectiveness of univariate Shewhart control charts is challenged by monitoring highly correlated quality variables simultaneously. The development of nonparametric multivariate statistical process control (MSPC) is critically important these days.
    In this article, we propose a new Phase II nonparametric multivariate expone-ntially weighted moving average (EWMA) control chart for monitoring the process covariance matrix, which is based on the principal component analysis (PCA) and sign statistics. We use the average run length (ARL) to measure the detection performance of the proposed control chart. The proposed control chart surpasses the existing nonparametric control charts in some out-of-control scenarios, especially with sample size 5 and small shifts in the covariance or the correlation coefficients. The application of the proposed control is demonstrated by gravel and semiconductor process data.
    Further, we extend the proposed control chart by considering of variable dimension (VD) to diminish the detection time and the sampling cost under an out-of-control process. We use the adjusted average time to signal (AATS) to measure the detection efficiency of the VD control chart for various sampling plans.
    Reference: [1] Alt, F. B. (1985). Multivariate Quality Control, in Encyclopedia of Statistical Sciences, Vol. 6, 110-122.
    [2] Amin, R. W., Reynolds Jr, M. R., & Saad, B. (1995). Nonparametric quality control charts based on the sign statistic. Communications in Statistics-Theory and Methods, 24(6), 1597-1623.
    [3] Aparisi, F., Epprecht, E. K., & Ruiz, O. (2012). T2 control charts with variable dimension. Journal of quality technology, 44(4), 375-393.
    [4] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks. Quality Engineering, 16(4), 613-623.
    [5] Bakir, S. T. (2006). Distribution-free quality control charts based on signed-rank-like statistics. Communications in Statistics-Theory and Methods, 35(4), 743-757.
    [6] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), 528-538.
    [7] Capizzi, G., & Masarotto, G. (2017). Phase I distribution-free analysis of multivariate data. Technometrics, 59(4), 484-495.
    [8] Chakraborti, S., & Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs. Communications in Statistics—Simulation and Computation®, 36(2), 335-356.
    [9] Chakraborti, S., & Van de Wiel, M. A. (2008). A nonparametric control chart based on the Mann-Whitney statistic (pp. 156-172). Institute of Mathematical Statistics.
    [10] Cheng, C. R., & Shiau, J. J. H. (2015). A distribution‐free multivariate control chart for phase I applications. Quality and Reliability Engineering International, 31(1), 97-111.
    [11] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459.
    [12] Chou, Y. M., Polansky, A. M., & Mason, R. L. (1998). Transforming non-normal data to normality in statistical process control. Journal of Quality Technology, 30(2), 133-141.
    [13] Costa, A. F., & Machado, M. A. (2008). A new chart for monitoring the covariance matrix of bivariate processes. Communications in Statistics—Simulation and Computation®, 37(7), 1453-1465.
    [14] Costa, A. F. B., & Machado, M. A. G. (2009). A new chart based on sample variances for monitoring the covariance matrix of multivariate processes. The International Journal of Advanced Manufacturing Technology, 41(7-8), 770-779.
    [15] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
    [16] Das, N. (2008). Non-parametric control chart for controlling variability based on rank test.
    [17] Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 927-939.
    [18] Douglas M. Hawkins & Edgard M. Maboudou-Tchao (2008) Multivariate Exponentially Weighted Moving Covariance Matrix, Technometrics, 50:2, 155-166.
    [19] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282.
    [20] Farokhnia, M., & Niaki, S. T. A. (2020). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, 49(7), 1815-1838.
    [21] Ghute, V. B., & Shirke, D. T. (2008). A multivariate synthetic control chart for process dispersion. Quality Technology & Quantitative Management, 5(3), 271-288.
    [22] Haq, A., & Sohrab, K. (2021). Directionally sensitive MCUSUM mean charts. Quality and Reliability Engineering International.
    [23] Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables. Technometrics, 33(1), 61-75.
    [24] Holmes, D. S., & Mergen, A. E. (1993). Improving the performance of the T2 control chart. Quality Engineering, 5(4), 619-625.
    [25] Hotelling, H. (1947) Multivariate quality control-illustrated by the air testing of sample bombsights, Techniques of Statistical Analysis, Eisenhart, C., Hastay, M.W. and Wallis, W.A. (eds), McGraw-Hill, New York, NY, pp. 111–184.
    [26] Huwang, L., Lin, P. C., Chang, C. H., Lin, L. W., & Tee, Y. S. (2017). An EWMA chart for monitoring the covariance matrix of a multivariate process based on dissimilarity index. Quality and Reliability Engineering International, 33(8), 2089-2104.
    [27] Huwang, L., Lin, L. W., & Yu, C. T. (2019). A spatial rank–based multivariate EWMA chart for monitoring process shape matrices. Quality and Reliability Engineering International, 35(6), 1716-1734.
    [28] Jackson, J. E. (1959). Quality Control Methods for Several Related Variables, Technometrics,Vol. 1(4),pp. 359–377.
    [29] Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.
    [30] Khilare, S. K., & Shirke, D. T. (2012). Nonparametric synthetic control charts for process variation. Quality and Reliability Engineering International, 28(2), 193-202.
    [31] Krupskii, P., Harrou, F., Hering, A. S., & Sun, Y. (2020). Copula-based monitoring schemes for non-Gaussian multivariate processes. Journal of Quality Technology, 52(3), 219-234.
    [32] Li, B., Wang, K., & Yeh, A. B. (2013). Monitoring the covariance matrix via penalized likelihood estimation. IIE Transactions, 45(2), 132-146.
    [33] Li, C., & Mukherjee, A. (2021). Two economically optimized nonparametric schemes for monitoring process variability. Quality and Reliability Engineering International.
    [34] Li, Z., Zou, C., Wang, Z., & Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45(2), 149-165.
    [35] Li, Z., Xie, M., & Zhou, M. (2018). Rank-based EWMA procedure for sequentially detecting changes of process location and variability. Quality Technology & Quantitative Management, 15(3), 354-373.
    [36] Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions. Quality Technology & Quantitative Management, 16(1), 113-127.
    [37] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53.
    [38] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE transactions, 27(6), 800-810.
    [39] Malela-Majika, J. C. (2021). New distribution-free memory-type control charts based on the Wilcoxon rank-sum statistic. Quality Technology & Quantitative Management, 18(2), 135-155.
    [40] Malela-Majika, J. C., Chakraborti, S., & Graham, M. A. (2016). Distribution-free Phase II Mann–Whitney control charts with runs-rules. The International Journal of Advanced Manufacturing Technology, 86(1), 723-735.
    [41] Michael, M. C., & Johnston, A. (2008). Secom Data Sets of UCI Machine Learning Repository.
    [42] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions (Vol. 26, pp. 427-435).
    [43] Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons.
    [44] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
    [45] Perry, M. B., & Wang, Z. (2020). A distribution-free joint monitoring scheme for location and scale using individual observations. Journal of Quality Technology, 1-18.
    [46] Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of quality technology, 22(3), 173-186.
    [47] Qiu, P. (2018). Some perspectives on nonparametric statistical process control. Journal of Quality Technology, 50(1), 49-65.
    [48] Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). Charts with variable sampling intervals. Technometrics, 30(2), 181-192.
    [49] Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 2(3), 117-119.
    [50] Shewhart, W. A. (1931). Economic control of quality of manufactured product. Macmillan And Co Ltd, London.
    [51] Scrucca, L. (2013). GA: a package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1-37.
    [52] Stoumbos, Z. G., Reynolds Jr, M. R., Ryan, T. P., & Woodall, W. H. (2000). The state of statistical process control as we proceed into the 21st century. Journal of the American Statistical Association, 95(451), 992-998.
    [53] Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate control charts for individual observations. Journal of quality technology, 24(2), 88-95.
    [54] Wang, S., & Reynolds Jr, M. R. (2013). A GLR control chart for monitoring the mean vector of a multivariate normal process. Journal of Quality Technology, 45(1), 18-33.
    [55] Xue, L., & Qiu, P. (2020). A nonparametric CUSUM chart for monitoring multivariate serially correlated processes. Journal of Quality Technology, 1-14.
    [56] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), 1410-1427.
    [57] Yang, S. F., & Arnold, B. C. (2014). A simple approach for monitoring business service time variation. The Scientific World Journal, 2014.
    [58] Yang, S. F., & Arnold, B. C. (2016). Monitoring process variance using an ARL‐unbiased EWMA‐p control chart. Quality and Reliability Engineering International, 32(3), 1227-1235.
    [59] Yang, S. F., & Jiang, T. A. (2019). Service quality variation monitoring using the interquartile range control chart. Quality Technology & Quantitative Management, 16(5), 613-627.
    [60] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243.
    [61] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International.
    [62] Yang, S. F., & Wu, S. H. (2017). A double sampling scheme for process variability monitoring. Quality and Reliability Engineering International, 33(8), 2193-2204.
    [63] Yeh, A.B., Lin, D. K. J., Zhou, H. and Venkataramani, C. (2003). A multivariate exponentially moving average control chart for monitoring process variability. Journal of Applied Statistics, 30: 507–536.
    [64] Yen, C. L., & Shiau, J. J. H. (2010). A multivariate control chart for detecting increases in process dispersion. Statistica Sinica, 1683-1707.
    [65] Yen, C. L., Shiau, J. J. H., & Yeh, A. B. (2012). Effective control charts for monitoring multivariate process dispersion. Quality and Reliability Engineering International, 28(4), 409-426.
    [66] Zhou, M., Zhou, Q., & Geng, W. (2016). A new nonparametric control chart for monitoring variability. Quality and Reliability Engineering International, 32(7), 2471-2479.
    [67] Zou, C., & Tsung, F. (2010). Likelihood ratio-based distribution-free EWMA control charts. Journal of Quality Technology, 42(2), 174-196.
    Description: 碩士
    國立政治大學
    統計學系
    108354012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108354012
    Data Type: thesis
    DOI: 10.6814/NCCU202101129
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401201.pdf11800KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback