English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52685989      Online Users : 422
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136012


    Title: 企業導入大數據分析系統的流程與影響因素之探討
    An Empirical Study of Introducing Big Data Analysis System and Corresponding Key Factors
    Authors: 吳思緯
    Wu, Sz-Wei
    Contributors: 吳豐祥
    Wu, Feng-Shang
    吳思緯
    Wu, Sz-Wei
    Keywords: 大數據
    關鍵成功因素
    資訊系統導入
    數據分析系統
    big data
    big data analysis
    information system import
    key success factors
    Date: 2021
    Issue Date: 2021-07-01 21:03:14 (UTC+8)
    Abstract: 隨著科技的發展,大數據所帶來的潛在機會與影響越來越受到企業與研究者的重視,麥肯錫(McKinsey)顧問公司早在2011年就曾發表文章,說明「大數據是下一個創新、競爭、及生產力的先鋒代表」。儘管數據分析富含巨大的商業價值,企業亦明白數據分析可以帶來的潛在價值,但是企業該如何有效導入大數據分析系統並發揮其價值,仍是一大挑戰。本論文主要的目的即是針對此一重要議題進行探討。
    本研究針對大數據分析的概念、資訊系統導入流程與關鍵成功因素等文獻進行探討與整理,進而提出一個包含「組織管理」、「參與人員」、「科技系統」、「資訊系統導入流程」與「導入成效與價值」等五構面的研究架構,其中導入流程包括:「導入階段」、「執行階段」與「後執行階段」。接著選擇一家代表性的公司,進行深入的質性個案研究。所得到的主要研究結論如下:
    結論一:企業導入大數據分析系統時,在執行階段會採取近似敏捷式管理與做 中學的方式;而在後執行階段,則會透過經驗與產業知識的累積,以逐步發揮成效。
    結論二:企業導入大數據分析系統時,會強調資料的正確性與資料定義的釐清。也會強調累積知識的儲存、更新與安全性。
    結論三:企業導入大數據分析系統時,在流程上,會透過適時地重新設計流程與汰換工具以強化流程再造。也會強調系統工具轉換時的檢查。
    結論四:企業導入大數據分析系統時,其數據分析團隊成員的IT技術與商業洞察都是很關鍵的能力。
    結論五:企業在導入大數據分析系統時,高階主管的支持,不論是在導入前、執行或後執行階段,皆扮演重要的角色。
    結論六:企業導入大數據分析系統時,特別在執行階段與後執行階段,其企業流程再造會影響系統運作的效率與跨部門間的合作。
    本研究最後並提出實務上的意涵與後續研究的建議。
    With the ever-changing nature of technology, advanced analytics are capable of extrapolating data from a wide range of source to predict future outcomes with amazing accuracy. McKinsey had published an article in 2011 stating that " Big data: The next frontier for innovation, competition, and productivity ". Big data is invaluable to today’s businesses, but how to effectively introduce big data analysis system and achieve productive result is still a major challenge facing companies. The main purpose of this research is to investigate this important issue.
    Based on the literature review of big data, key success factors and the process of information system implementation, this research originally proposed a conceptual framework which includes five construct: organization management, participants, technology, process of information system implementation and effectiveness and value of implement. There’re three stage of information system implementation, pre-implementation phase, implementation phase and post-implementation phase. This research chooses a representative company for in-depth interviews. The preliminary conclusions through the case study are as below:
    Conclusion 1: When companies introduce big data analysis systems, they will adopt agile management and learning by doing approaches in the implementation stage; in the post-implementation stage, they will use the accumulation of experience and industry knowledge to gradually achieve results.
    Conclusion 2: When companies import big data analysis systems, they will emphasize the correctness of data and the clarification of data definitions. It will also emphasize the storage, update and security of knowledge.
    Conclusion 3: When an enterprise introduces a big data analysis system, the process reengineering will be strengthened by redesigning the process and replacing tools. It also emphasizes the examination when the system tool is converted.
    Conclusion 4: When an enterprise introduces a big data analysis system, IT technology and business insights are all critical capabilities, based the insights of data analysis team members.
    Conclusion 5: When an enterprise introduces a big data analysis system, it will be affected by the attitude of the senior executives. The support of the senior executives plays an important role in the pre- implementation, implementation, or post-implementation phase.
    Conclusion 6: When an enterprise introduces a big data analysis system, especially in the implementation phase and the post- implementation phase, its business process reengineering will affect the efficiency of system and cross-functional communication.
    Reference: 中文文獻
    CloudMile (2020)。數據分析入門課:概念要懂工具要有,線上檢索日期:2021年3月21日。網址: https://mile.cloud/zh/resources/blog/163/%E6%95%B8%E6%93%9A%E5%88%86%E6%9E%90%E5%85%A5%E9%96%80%E8%AA%B2%EF%BC%9A%E6%A6%82%E5%BF%B5%E8%A6%81%E6%87%82%EF%BC%8C%E5%B7%A5%E5%85%B7%E8%A6%81%E6%9C%89 。
    MP頭條。手遊代理需要我們做什麼,線上檢索日期:2021年5月5日。網址:https://min.news/zhtw/game/8a02213c746d5c7d3c04cc1e7c15d21e.html 。
    SAP官網。什麼是ERP,線上檢索日期:2021年1月8日。網址:https://www.sap.com/taiwan/insights/what-is-erp.html 。
    Smith, E. A. (2020). 六個將顛覆遊戲產業的趨勢:你準備好革命了嗎,線上檢索日期:2021年5月5日。網址:
    https://blog.treasuredata.com/zh-TW/blog/2020/06/24/6-gaming-trends-to-watch-now-get-ready-for-a-revolution/ 。
    帆軟官網(2021)。解析!如何成為數據分析師:必備技能TOP5,線上檢索日期:2021年5月8日。網址:https://www.finereport.com/tw/data-analysis/parse-how-to-become-a-data-analyst-top-5-essential-skills.html
    池文海、邱天佑、李立偉(2012)。網際網路資訊系統實際使用前置因素之研究。品質學報,19(6), 523–540。
    何淑熏、陳錦琮(2014)。以 D&M 模式探討影響企業資訊系統服務品質之因素。創新與經營管理學刊,5(1), 1–20。
    吳思華(1988)。 產業政策與企業策略:台灣地區產業發展歷程。中國經濟企業研究所。
    林育震(2010)。掌控風險 發揮雲端效益。資訊安全通訊,16(4), 138–149。
    林毅祥(2014)。探討廣告數據平台DMP價值,線上檢索日期:2021年4月10日。網址: https://www.gvm.com.tw/article/26988 。
    袁國榮、季璐、林憬、吳寶玉(2012)。台電公司公文及檔案管理資訊系統品質與使用者滿意之研究。顧客滿意學刊,8(2),237–270。
    張景盛、藍宜亭、羅永欽、劉景寬、龔榮源、林佳姿、黃俊英(2012)。資訊系統品質、認知有用性、認知易用性、內部行銷與服務品質對 PACS 系統使用者滿意度之影響。北市醫學雜誌,9(2),109–122。
    張銀益、何渼台(2013)。企業採用雲端供應鏈系統之影響因素研究。第十七屆海峡兩岸信息管理發展與策略學術研討會,1–7。
    陳毅斌(2021)。 解密2021遊戲商機!用大數據挖出高含金量玩家,線上檢索日期:2021年6月28日。網址:https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=40&id=0000601908_I5X8UYWH10E7U770UUW6X
    社群口碑資料庫(2017)。第三方數據在零售業的創新應用,線上檢索日期:2021年4月15日。網址:https://www.opview.com.tw/portfolio_item/20170725 。
    陸芊螢、陳羿愷(2013)。探討影響員工數位學習滿意度之關鍵因素。樹德科技大學學報,15(2),23–42。
    曾繁絹、李宗翰(2008)。圖書館電子資源整合查詢系統評估之研究。圖書資訊學刊, 6(1&2),111–142。
    劉季清(2019)。 遊戲業轉型 AI、大數據助陣,線上檢索日期:2021年6月28日。網址: https://ctee.com.tw/news/tech/76061.html。
    潘淑滿(2003)。質性研究:理論與應用。臺北市:心理出版社。
    蔡金宏(2010)。 雲端運算服務與中小企業。經濟前瞻(131), 93–96。
    諶家蘭(2015)。企業導入大數據分析與應用之概述。會計研究月刊(355),54–58。
    謝佳穎(2016)。第一方資料(First-Party Data):企業所需最接近真相的數據分析,線上檢索日期:2021年3月20日。網址: https://www.smartm.com.tw/article/32323934cea3 。
    蘇文彬(2014)。台灣 IBM年底將為企業推出華生認知運算資料分析服務,線上檢索日期:2021年3月21日。網址:https://techtalk.ithome.com.tw/news/92126 。
    李芳齡(譯)(2020)。AI行銷學:為顧客量身訂做的全通路轉型策略。台北:天下。(Houlind, R., & Shearer, C. ,2019)


    英文文獻
    Al-Rodhan, N. (2014). The social contract 2.0: Big data and the need to guarantee privacy and civil liberties. Harvard International Review, 16.
    Applegate, L. M. (1994). Managing in an information age: Transforming the Organization for the 1990s. Proceedings of the IFIP WG8. 2 Working Conference on Information Technology and New Emergent Forms of Organizations: Transforming Organizations with Information Technology, 15-49.
    Arora, S. (2021). Data Mining Vs. Machine Learning: What Is the Difference, Retrieved March 2, 2021, from
    https://www.simplilearn.com/data-mining-vs-machine-learning-article
    Barocas, S., & Nissenbaum, H. (2014). Big data`s end run around procedural privacy protections. Communications of the ACM, 57(11), 31-33.
    Basoglu, N., Daim, T., & Kerimoglu, O. (2007). Organizational adoption of enterprise resource planning systems: A conceptual framework. The Journal of High Technology Management Research, 18(1), 73-97.
    Beath, C. M. (1991). Supporting the information technology champion. MIS Quarterly, 355-372.
    Boyd, D., & Crawford, K. (2011). Six provocations for big data. In A decade in internet time: Symposium on the dynamics of the internet and society.
    Bradley, J. (2008). Management based critical success factors in the implementation of Enterprise Resource Planning systems. International Journal of Accounting Information Systems, 9(3), 175-200.
    Brancheau, J. C., & Wetherbe, J. C. (1987). Key issues in information systems management. MIS Quarterly, 23-45.
    BUSINESS WIRE. (2020). NewVantage Partners Releases 2020 Big Data and AI Executive Survey, Retrieved March 2, 2021, from https://www.businesswire.com/news/home/20200106005280/en/NewVantage-Partners-Releases-2020-Big-Data-and-AI-Executive-Survey
    BUSINESS WIRE. (2021). NewVantage Partners Releases 2021 Big Data and AI Executive Survey, Retrieved March 2, 2021, from https://www.businesswire.com/news/home/20210104005022/en/NewVantage-Partners-Releases-2021-Big-Data-and-AI-Executive-Survey
    Cambria, E., Rajagopal, D., Olsher, D., & Das, D. (2013). Big social data analysis. Big Data Computing, 13, 401-414.
    Choe, J.-M. (1996). The relationships among performance of accounting information systems, influence factors, and evolution level of information systems. Journal of Management Information Systems, 12(4), 215-239.
    Collier, K. (2012). Agile Analytics: A Value-driven Approach to Business Intelligence and Data Warehousing. Addison-Wesley.
    Curran, T., Keller, G., & Ladd, A.(1998). SAP R/3 Business Blueprint: Understanding the Business Process Reference Model.
    Daniel, D. R. (1961). Management information crisis. Harvard Business Review, 111-121.
    Davenport, T. H. (1993). Process Innovation: Reengineering Work Through Information Technology. Harvard Business Press.
    DeSanctis, G., & Courtney, J. F. (1983). Toward friendly user MIS implementation. Communications of the ACM, 26(10), 732-738.
    Diebold, F. (2000). Big Data Dynamic Factor Models for Macroeconomic Measurement and Forecasting.
    Dillard, J. (2017). The Data Analysis Process: 5 Steps To Better Decision Making, Retrieved March 2, 2021, from https://www.bigskyassociates.com/blog/bid/372186/The-Data-Analysis-Process-5-Steps-To-Better-Decision-Making
    Ehie, I. C., & Madsen, M. (2005). Identifying critical issues in enterprise resource planning (ERP) implementation. Computers in Industry, 56(6), 545-557.
    Esteves, J., & Bohorquez, V. (2007). An updated ERP systems annotated bibliography: 2001-2005. Communications of the Association for Information Systems, 19(1), 18.
    Galetto, M. (2016). What is Data Analysis, Retrieved March 7, 2021, from https://www.ngdata.com/dictionary/data-analysis-definition/
    Grover, M., Malaska, T., Seidman, J., & Shapira, G. (2015). Hadoop application architectures: Designing real-world big data applications. " O`Reilly Media, Inc.".
    Häkkinen, L., & Hilmola, O. P. (2008). Life after ERP implementation: Long‐term development of user perceptions of system success in an after‐sales environment. Journal of Enterprise Information Management.
    Haleem, A., Javaid, M., Khan, I. H., & Vaishya, R. (2020). Significant applications of big data in COVID-19 pandemic. Indian Journal of Orthopaedics, 54, 526-528.
    Hammer, M., Champy, J., & Le Seac`h, M. (1993). Le reengineering (Vol. 93). Dunod Paris.
    Harrison, M. I. (2004). Diagnosing Organizations: Methods, Models, and Processes. Sage Publications.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Hilbert, M. R., & Lu, K. (2020). The online job market trace in Latin America and the Caribbean.
    Jain, A. (2016). The 5 V’s of big data. Watson Health Perspectives, Retrieved February 20, 2021, from https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/
    Jayawickrama, U., & Yapa, S. (2013). Factors affecting ERP implementations: client and consultant perspectives. Journal of Enterprise Resource Planning Studies, 2013(online), 1-13.
    Kim, Y., Lee, Z., & Gosain, S. (2005). Impediments to successful ERP implementation process. Business Process Management Journal.
    Koch, C., Slater, D., & Baatz, E. (1999). the ABCs of ERP. CIO magazine, 22.
    Kwahk, K.-Y., & Lee, J.-N. (2008). The role of readiness for change in ERP implementation: Theoretical bases and empirical validation. Information & Management, 45(7), 474-481.
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
    Latham, G. P., & Lee, T. W. (1986). Goal setting. Generalizing from laboratory to field settings, 101, 117.
    Leavitt, H. J. (1965). Applied organizational change in industry, structural, technological and humanistic approaches. Handbook of Organizations, 264.
    Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., & Christakis, N. (2008). Tastes, ties, and time: A new social network dataset using Facebook. com. Social networks, 30(4), 330-342.
    LOTAME. (2019). 1st Party Data, 2nd Party Data, 3rd Party Data: What Does It All Mean , Retrieved March 2, 2021, from
    https://www.lotame.com/1st-party-2nd-party-3rd-party-data-what-does-it-all-mean/#what-is-3rd-party-data
    Lozinsky, S. (1998). Enterprise-wide software solutions: integration strategies and practices. Addison-Wesley Longman Ltd.
    Magoulas, R., & Lorica, B. (2009). Introduction to big data. Radar. Release, 2.

    Malhotra, Y. (2004). Role of information technology in managing organizational change and organizational interdependence.
    Manancourt, V. (2020). Coronavirus tests Europe’s resolve on privacy, Retrieved March 3, 2021, from https://www.politico.eu/article/coronavirus-tests-europe-resolve-on-privacy-tracking-apps-germany-italy/
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
    Markus, M. L., & Tanis, C. (2000). The enterprise systems experience-from adoption to success. Framing the domains of IT research: Glimpsing the future through the past, 173(2000), 207-173.
    Mayer-Schönberger, V., & Cukier, K. (2013). Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt.
    McCune, J. C. (1998). Data, data, everywhere. Management Review, 87(10), 10.
    McGill, T., Hobbs, V., & Klobas, J. (2003). User developed applications and information systems success: A test of DeLone and McLean`s model. Information Resources Management Journal (IRMJ), 16(1), 24-45.
    Measuring the Business Value of Big Data, Retrieved January 20, 2021, from www.ibmbigdatahub.com
    Morton, G. H. A. (1983). Become a project champion. International Journal of Project Management, 1(4), 197-203.
    Nah, F. F. H., Lau, J. L. S., & Kuang, J. (2001). Critical factors for successful implementation of enterprise systems. Business process management journal.
    Nicolaou, A. I. (2004). Firm performance effects in relation to the implementation and use of enterprise resource planning systems. Journal of Information Systems, 18(2), 79-105.
    O`Neil, C., & Schutt, R. (2013). Doing data science: Straight talk from the frontline. " O`Reilly Media, Inc.".
    O’reilly, T. (2005). Web 2.0: compact definition.
    Ohm, P. (2012). Don`t build a database of ruin. Harvard Business Review.
    Onay, C., & Öztürk, E. (2018). A review of credit scoring research in the age of Big Data. Journal of Financial Regulation and Compliance.
    Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology in organizations. Organization Science, 3(3), 398-427.
    Orlikowski, W. J., & Gash, D. C. (1994). Technological frames: making sense of information technology in organizations. ACM Transactions on Information Systems (TOIS), 12(2), 174-207.
    Porter, M. E. (1990). New global strategies for competitive advantage. Planning Review.
    Rajpurohit, A. (2014). Interview: Amy Gershkoff, Director of Customer Analytics & Insights, eBay on How to Design Custom In-House BI Tools. KDnuggets. Retrieved, 07-14.
    AMR RESEARCH. (1998). AMR research predicts industrial enterprise applications market will reach $72.6 billion by 2002. AMR.
    Rockart, J. F. (1979). Chief executives define their own data needs. Harvard business review, 57(2), 81-93.
    Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. 2013 international conference on collaboration technologies and systems (CTS),
    Sanchez, R., & Heene, A. (1997). Strategic Learning and Knowledge Management (Vol. 6). Citeseer.
    Sauer, C., & Yetton, P. W. (1997). Steps to the future: fresh thinking on the management of IT-based organizational transformation. Jossey-Bass Inc., Publishers.
    Schultz, R. L., Slevin, D. P., & Pinto, J. K. (1987). Strategy and tactics in a process model of project implementation. Interfaces, 17(3), 34-46.
    Sumner, M. (1999). Critical success factors in enterprise wide information management systems projects. Proceedings of the 1999 ACM SIGCPR conference on Computer personnel research, 297-303.
    Sumner, M., Bock, D., & Giamartino, G. (2006, 2006/09/01). Exploring the Linkage Between the Characteristics of it Project Leaders and Project Success. Information Systems Management, 23(4), 43-49. https://doi.org/10.1201/1078.10580530/46352.23.4.20060901/95112.6
    Thompson, A. A., & Strickleand, A. (1996). Strategic management: Concepts and cases. Long Range Planning, 6(29), 907-908.
    Tran-Hoang-Phuong, N. (2021). What is Big Data Analytics and Why It is Important, Retrieved March 16, 2021, from
    https://bestarion.com/what-is-big-data-analytics-and-why-it-is-important/
    Tress, L. (2017). Israeli startup uses big data, minimal hardware to treat diabetes, Retrieved March 7, 2021 from
    https://www.timesofisrael.com/israeli-startup-uses-big-data-minimal-hardware-to-treat-diabetes/
    Umble, E. J., & Umble, M. (2001). Enterprise resource planning systems: a review of implementation issues and critical success factors. proceedings of the 32nd annual meeting of the decision sciences institute, 1109-11.
    Westerveld, E. (2003). The Project Excellence Model®: linking success criteria and critical success factors. International Journal of Project Management, 21(6), 411-418.
    Yin, R. K. (1994). Discovering the future of the case study. Method in evaluation research. Evaluation Practice, 15(3), 283-290.
    Zimmer, M. (2008). The externalities of search 2.0: The emerging privacy threats when the drive for the perfect search engine meets Web 2.0. First Monday.
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    108364128
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108364128
    Data Type: thesis
    DOI: 10.6814/NCCU202100614
    Appears in Collections:[科技管理與智慧財產研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    412801.pdf2048KbAdobe PDF21View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback