政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/135982
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 50999460      在线人数 : 932
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/135982


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/135982


    题名: 不確定的環境中無人機的階層式協力運動規劃
    A Collaborative Hierarchical Online Motion Planner for UAV in an Uncertainty Environment
    作者: 蔡苡雋
    Tsai, Yi-Chuan
    贡献者: 李蔡彥
    Li, Tsai-Yen
    蔡苡雋
    Tsai, Yi-Chuan
    关键词: 無人機
    運動規劃
    路徑規劃
    快速搜索隨機樹
    UAV
    Hierarchical Motion Planning
    Path Planning
    Rapidly-exploring Random Tree
    日期: 2021
    上传时间: 2021-07-01 19:57:18 (UTC+8)
    摘要: 路徑規劃一直是無人機自動化研究中重要的課題,其目的在於確保無人機的安全性及效率,在移動中隨時更新與即時規劃路徑,讓無人機順利到達目標點。無人機的機上運算對於複雜或廣大的區域,需要消耗很多計算時間,而對於無人機的安全性來說,需要較短的規劃時間來達到飛行安全的目的。在本論文中,我們探討了不同的路徑規劃演算法的優劣勢,並決定採用快速搜索隨機樹(RRT)作為無人機的路徑規劃演算法,且提出了一種階層式協力計算架構,此架構利用機上運算與基地台的非同步合作規劃,嘗試解決在單層路徑規劃上較難同時確保規劃即時性與路徑最優性的問題。本系統可用於無人機行駛在不確定的環境中即時規劃路徑,並確保無人機在飛行時的安全,及產出有效率的路徑。我們以四種不同環境條件下進行即時模擬飛行實驗,實驗結果顯示本架構可有效降低飛行花費時間或是飛行路徑長度,並且能在有提供風場資訊的環境中,選擇更順風的路徑飛行。
    Path planning has always been an important topic in the research of UAV automated navigation. The purpose of this work is to consider the safety and efficiency of UAVs when planning and updating the path in real-time during the movement such that the UAV can reach the goal configuration successfully. Global path planning usually requires a great amount of computing for complex or large areas, which may be beyond the onboard computing power of many UAVs. Even if the computation can be done on board, the long planning time may not guarantee the safety of UAV navigation. In this paper, we investigate the pros and cons of various path planning algorithms and choose Rapidly-exploring Random Tree (RRT) as a base planning algorithm for UAVs. We proposed a collaborative hierarchical computing architecture, which uses asynchronous cooperative planning of the computing resources onboard and at the base station. Our architecture aims to tackle the difficulty in single-layer path planning where the immediacy of planning and the optimality of the path can not be ensured at the same time. Our system can be used to plan the path for a UAV in an uncertain environment in real-time and ensure its safety during the flight and the effectiveness of the output path. We have conducted experiments in simulation for a typical UAV under four different environmental conditions. The experimental results show that our method can effectively reduce flight time or path length and choose a more downwind path if the wind field information is provided.
    參考文獻: [1] Wikipedia. "Unmanned aerial vehicle." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Unmanned_aerial_vehicle&oldid=955084723 (accessed 7 May 2020 05:46 UTC.
    [2] Wikipedia. "Motion planning." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Motion_planning&oldid=950519176 (accessed 7 May 2020 05:25 UTC.
    [3] H. Yang, Q. Jia, and W. Zhang, "An Environmental Potential Field Based RRT Algorithm for UAV Path Planning," in 2018 37th Chinese Control Conference (CCC), 2018: IEEE, pp. 9922-9927.
    [4] L. Yang, J. Qi, J. Xiao, and X. Yong, "A literature review of UAV 3D path planning," in Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014: IEEE, pp. 2376-2381.
    [5] G. A. Thanellas, V. C. Moulianitis, and N. A. Aspragathos, "A spatially wind aware quadcopter (UAV) path planning approach," IFAC-PapersOnLine, vol. 52, no. 8, pp. 283-288, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ifacol.2019.08.084.
    [6] K. Yang, S. Keat Gan, and S. Sukkarieh, "A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV," Advanced Robotics, vol. 27, no. 6, pp. 431-443, 2013.
    [7] W. Zu, G. Fan, Y. Gao, Y. Ma, H. Zhang, and H. Zeng, "Multi-uavs cooperative path planning method based on improved rrt algorithm," in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: IEEE, pp. 1563-1567.
    [8] L. De Filippis, G. Guglieri, and F. Quagliotti, "A minimum risk approach for path planning of UAVs," Journal of Intelligent & Robotic Systems, vol. 61, no. 1-4, pp. 203-219, 2011.
    [9] A. González-Sieira, M. Mucientes, and A. Bugarín, "Motion planning under uncertainty in graduated fidelity lattices," Robotics and Autonomous Systems, vol. 109, pp. 168-182, 2018.
    [10] F. Li, S. Zlatanova, M. Koopman, X. Bai, and A. Diakité, "Universal path planning for an indoor drone," Automation in Construction, vol. 95, pp. 275-283, 2018.
    [11] Z. Beck, W. T. L. Teacy, A. Rogers, and N. R. Jennings, "Collaborative online planning for automated victim search in disaster response," Robotics and Autonomous Systems, vol. 100, pp. 251-266, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.robot.2017.09.014.
    [12] S. M. LaValle, J. J. Kuffner, and B. Donald, "Rapidly-exploring random trees: Progress and prospects," Algorithmic and computational robotics: new directions, no. 5, pp. 293-308, 2001.
    [13] S. Karaman and E. Frazzoli, "Incremental sampling-based algorithms for optimal motion planning," Robotics Science and Systems VI, vol. 104, no. 2, 2010.
    [14] J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path planning," in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), 2000, vol. 2: IEEE, pp. 995-1001.
    [15] T.-Y. Li and Y.-C. Shie, "An incremental learning approach to motion planning with roadmap management," in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 2002, vol. 4: IEEE, pp. 3411-3416.
    [16] K. Liang, Z. Chun-xia, and G. Jian-hui, "Path Planning Based on Fuzzy Rolling Rapidly-exploring Random Tree for Mobile Robot," School of Computer Science and Technology,NUST,Nanjing 210094,China, vol. 34, no. 5, pp. 642-648, 2010.
    [17] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C. Peng, "Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges," Sensors (Basel, Switzerland), vol. 18, 2018.
    [18] Wikipedia. "Robot Operating System." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=985900454 (accessed 4 November 2020 02:47 UTC.
    描述: 碩士
    國立政治大學
    資訊科學系
    107753044
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107753044
    数据类型: thesis
    DOI: 10.6814/NCCU202100475
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    304401.pdf4262KbAdobe PDF246检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈