政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/135889
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114523/145550 (79%)
造訪人次 : 53566148      線上人數 : 1126
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/135889
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/135889


    題名: Mimicking Complexity of Structured Data Matrix’s Information Content: Categorical Exploratory Data Analysis
    作者: 周珮婷
    Chou, Elizabeth P.
    Hsieh, Fushing
    Chen, Ting-Li
    貢獻者: 統計系
    關鍵詞: contingency-kD-lattice; high order structural dependency; heterogeneity; mutual conditional entropy matrix; principal component analysis (PCA)
    日期: 2021-05
    上傳時間: 2021-06-25 10:17:21 (UTC+8)
    摘要: We develop Categorical Exploratory Data Analysis (CEDA) with mimicking to explore and exhibit the complexity of information content that is contained within any data matrix: categorical, discrete, or continuous. Such complexity is shown through visible and explainable serial multiscale structural dependency with heterogeneity. CEDA is developed upon all features’ categorical nature via histogram and it is guided by all features’ associative patterns (order-2 dependence) in a mutual conditional entropy matrix. Higher-order structural dependency of k(≥3) features is exhibited through block patterns within heatmaps that are constructed by permuting contingency-kD-lattices of counts. By growing k, the resultant heatmap series contains global and large scales of structural dependency that constitute the data matrix’s information content. When involving continuous features, the principal component analysis (PCA) extracts fine-scale information content from each block in the final heatmap. Our mimicking protocol coherently simulates this heatmap series by preserving global-to-fine scales structural dependency. Upon every step of mimicking process, each accepted simulated heatmap is subject to constraints with respect to all of the reliable observed categorical patterns. For reliability and robustness in sciences, CEDA with mimicking enhances data visualization by revealing deterministic and stochastic structures within each scale-specific structural dependency. For inferences in Machine Learning (ML) and Statistics, it clarifies, upon which scales, which covariate feature-groups have major-vs.-minor predictive powers on response features. For the social justice of Artificial Intelligence (AI) products, it checks whether a data matrix incompletely prescribes the targeted system.
    關聯: Entropy, Vol.23, No.5, pp.594
    資料類型: article
    DOI 連結: https://doi.org/10.3390/e23050594
    DOI: 10.3390/e23050594
    顯示於類別:[統計學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    172.pdf2754KbAdobe PDF2283檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋