English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51851339      Online Users : 363
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 會計學系 > 學位論文 >  Item 140.119/134863
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134863


    Title: 探討新聞文本情緒分析與企業舞弊偵測之關聯性研究
    Exploring the relationship between the news sentiment analysis and the corporate fraud detection
    Authors: 麥嘉蕙
    Contributors: 諶家蘭
    麥嘉蕙
    Keywords: 舞弊偵測
    新聞情緒分析
    情緒詞典
    文本分析
    羅吉斯迴歸
    Fraud detection
    News sentiment analysis
    Textual analysis
    Logistic regression
    Date: 2021
    Issue Date: 2021-05-03 10:23:35 (UTC+8)
    Abstract: 本研究最主要之目的,係探討新聞文本資訊是否能反映出公司的財務狀況,並有效分辨舞弊公司,提早向投資人作出警示。本研究收集2010到2020年間遭投資者保護中心起訴及TEJ資料庫中所記載發生舞弊事件之公司,選擇共58家發生舞弊事件的企業,以資產規模相近為準則選取116家一般公司為參照,收集舞弊公司舞弊曝光前兩年的新聞並計算相關新聞文本情緒字詞,得出情緒變數。最後以羅吉斯回歸來檢驗新聞文本情緒與舞弊偵測之關聯性。實證結果發現,「負面詞佔比」、「情緒強度」、「負面新聞數量」能顯著分辨舞弊公司及一般公司,亦發現加入情緒分數的迴歸式比起單使用財務變數之迴歸式解釋力更強。
    The main purpose of this study is to examine whether the press release information can reflect the company`s financial situation and effectively identify fraudulent companies so that investors can be warned in advance. In this study, we collected companies that were prosecuted by the Securities and Futures Investors Protection Center(SFIPC) and flagged as fraudulent by TEJ database from 2010 to 2020. Finally selected a total of 58 companies that had fraudulent events, and 116 companies that had no fraudulent events based on similar asset size. Logistic regression was used to examine the correlation between news sentiment and fraud detection. The results show that "negative words", "sentiment intensity", and "number of negative news" can significantly distinguish fraudulent companies from ordinary companies. The regression which combined sentiment variables with financial variables have stronger explanatory power than regressions with only financial variables.
    Reference: 江玟瑜(2019)。以資料探勘技術偵測財務報表舞弊。國立臺灣大學會計學研究所碩士論文。
    岑紹基(2010)。語言功能與中文教學:系統功能語言學在中文教學上應用。香港:香港大學出版社。
    李承諺(2013)。應用舞弊三角理論偵測及預測財務報表舞弊-以台灣上市(櫃)公司為例。國立成功大學會計研究所學位論文。
    林宜萱(2013)。財經領域情緒辭典之建置與其有效性之驗證-以財經新聞為元件。臺灣大學會計學研究所學位論文。
    黃娟娟 (2012)。公司年報文字探勘與財務預警資訊內涵。逢甲大學商學博士學位學程博士論文。
    廖宜心(2019)。資料探勘技術於繼續經營能力評估模型之應用-媒體情緒分析。國立臺灣大學會計學研究所碩士論文。
    賴士詮(2018)。結合文字探勘與財務指標建置財務預警模型之研究。國立政治大學資訊管理系研究所學位論文。
    財團法人中華民國會計研究發展基金會,審計準則公報第四十三號-查核財務報表對舞弊之考量。
    Abrahams, A.S., Fan, W., Wang, G.A., Zhang, Z., and Jiao, J. (2015) An integrated text analytic framework for product defect discovery. Production and Operations Management, 24,6, 975–990.
    Amiram, D., Bozanic, Z., Cox, J. D., Dupont, Q., Karpoff, J. M., & Sloan, R. (2018). Financial reporting fraud and other forms of misconduct: a multidisciplinary review of the literature. Review of Accounting Studies, 23(2), 732–783.
    An, Z., Chen, C., Naiker, V., & Wang, J. (2020). Does media coverage deter firms from withholding bad news? Evidence from stock price crash risk. Journal of Corporate Finance, 64, 101664.
    Bao, Y., Ke, B., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach. Journal of Accounting Research, 58(1), 199-235.
    Beasley, M. S., Carcello, J. V., Hermanson, D. R., & Neal, T. L. (2010) “Fraudulent Financial Reporting: 1998–2007: An Analysis of U.S. Public Companies.” Sponsored by the Committee of Sponsoring Organizations of the Treadway Commission (COSO), 2010.
    Bian, S., Jia, D., Li, F., & Yan, Z. (2019). A New Chinese Financial Sentiment Dictionary for Textual Analysis in Accounting and Finance. SSRN Electronic Journal. doi:10.2139/ssrn.3446388
    Brazel, J. F., Jones, K. L., and Zimbelman, M. F. (2009). Using nonfinancial measures to assess fraud risk. Journal of Accounting Research, 47,5, 1135–1166.
    Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What Are You Saying? Using topic to Detect Financial Misreporting. Journal of Accounting Research, 58(1), 237–291.
    Call, A. C., Kedia, S., & Rajgopal, S. (2016). Rank and file employees and the discovery of misreporting: The role of stock options. Journal of Accounting and Economics, 62(2-3), 277-300.
    Cao, J., Luo, X., & Zhang, W. (2020). Corporate employment, red flags, and audit effort. Journal of Accounting and Public Policy, 39(1).
    Cecchini, M., Aytug, H., Koehler, G. J., & Pathak, P. (2010). Detecting Management Fraud in Public Companies. Management Science, 56(7), 1146–1160.
    Chen, Y., Liou, W., Chen, Y., & Wu, J. (2019). Fraud detection for financial statements of business groups. International Journal of Accounting Information Systems, 32, 1-23.
    Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17–82.
    Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging Financial Social Media Data for Corporate Fraud Detection. Journal of Management Information Systems, 35(2), 461–487.
    Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
    Hasnan, S., Razali, M. H., & Hussain, A. R. (2020). The effect of corporate governance and firm-specific characteristics on the incidence of financial restatement. Journal of Financial Crime, 27(2).
    Hobson, J. L., Mayew, W. J., & Venkatachalam, M. (2011). Analyzing Speech to Detect Financial Misreporting. Journal of Accounting Research, 50(2), 349–392.
    Jacobs, H. (2020). Hype or help? Journalists’ perceptions of mispriced stocks. Journal of Economic Behavior & Organization, 178, 550–565.
    Kim, C. S., Wang, K., Zhang, L. D.(2018). Readability of 10-k reports and stock price crash risk. Contemporary Accounting Research, 36(2),1184-1216.
    Loughran, T., & Mcdonald, B. (2011). When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35-65.
    Miller, G. S. (2006). The Press as a Watchdog for Accounting Fraud. Journal of Accounting Research, 44(5), 1001–1033.
    Purda, L.; and Skillicorn, D. (2014). Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection. Contemporary Accounting Research, 32,3, 1193–1223.
    Richardson, S. A., Sloan, R. G., Soliman, M. T., & Tuna, I. (2005). Accrual reliability, earnings persistence and stock prices. Journal of Accounting and Economics, 39(3), 437-485.
    Singh, N., Lai, K., Vejvar, M., & Cheng, T. C. (2019). Data‐driven auditing: A predictive modeling approach to fraud detection and classification. Journal of Corporate Accounting & Finance, 30(3), 64-82.
    Skousen, C. and Wright, C. (2008). Contemporaneous risk factors and the prediction of financial statement fraud. Journal of Forensic Accounting, IX,37-62.
    Summers, S. L. and Sweeney, J. T. (1998) Fraudulently misstated financial statements and insider trading: An empirical analysis. Accounting Review, 73,1, 131–146.
    Sun, Y., Sun, X., & Wu, W. (2020). Who detects corporate fraud under the thriving of the new media? Evidence from Chinese‐listed firms. Accounting & Finance.
    ACFE Report to the Nations: 2020 Global Fraud Study. (2020). Retrieved from https://www.acfe.com/report-to-the-nations/2020/
    投保中心依投保法第10條之1第1項第1款代表公司提起公司法第214條、227條訴訟時,起訴對象可否及於「卸任董監事」?—最高法院一○六年度台上字第二四二○號民事判決。取自:https://www.angle.com.tw/news/post27.aspx?ip=
    Description: 碩士
    國立政治大學
    會計學系
    107353044
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107353044
    Data Type: thesis
    DOI: 10.6814/NCCU202100422
    Appears in Collections:[會計學系] 學位論文

    Files in This Item:

    File SizeFormat
    304401.pdf2558KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback