English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113485/144472 (79%)
Visitors : 51389973      Online Users : 419
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134207


    Title: 應用決策樹分析交通事故情境因子
    Authors: 華健明
    Hua, Chien-Ming
    Contributors: 洪為璽
    季延平

    華健明
    Hua, Chien-Ming
    Keywords: 道路交通事故
    敘述性統計
    資料探勘
    決策樹
    ADTree
    Traffic accident
    Descriptive statistics
    Data mining
    Decision tree
    AD tree
    Date: 2020
    Issue Date: 2021-03-02 14:58:04 (UTC+8)
    Abstract: 駕駛人行車風險的高低會受到自身駕駛習慣、道路狀況、天候狀態等諸多內外部因素所影響,而有不同的肇事機率。然而,道路交通事故的發生通常導因於一連串不利因素的組合,而非單一肇事因素所致。因此,為了瞭解影響事故發生的各項影響因素,本研究藉由內政部警政署民國98年至民國102年A1、A2道路交通事故資料作為基礎,研究範疇設定為車與車事故,首先藉由敘述性統計分析各項影響交通事故發生的情境組成因素,再結合ADTree決策樹的資料分類機制進行分析,以瞭解在哪些條件下所發生的交通事故傾向高嚴重性的A1事故,進而進行事故發生情境之構建。
    研究結果顯示,當事者分析部分,當車種為大客車、大貨車者,所發生的事故有較高比例為死亡車禍;環境分析部分,雨天有較高的機會發生致死車禍,而在天氣狀態非雨天的條件下,道路狀態為濕潤者較乾燥者不易發生致死車禍;道路分析部分,當事故的道路類型為「圓環或廣場」者,發生致死車禍的比例較其他道路類型高,相關結果將可作為未來車險保單規劃或交通相關政策制定時之參考。
    The risk level of a driver will be affected by many internal and external factors such as driving habits, road conditions, weather conditions, etc., resulting in a different probability of traffic accidents. In order to understand the various factors that affect the occurrence of traffic accidents, this study uses the A1 and A2 traffic accident data from 2009 to 2013 of the National Police Agency, Ministry of the Interior as a basis, and the scope of this study contains car and car accidents. Firstly, various factors that contribute to traffic accidents are analyzed by descriptive statistics. Subsequently, the cumulative value of these factors are analyzed by the data classification model of alternating decision tree (AD Tree) to understand in which conditions the accident prone to high-severity, such as fatal traffic accidents. After all, the complete accident situation is constructed.
    When analyzing the involved vehicle types, the results show that coaches or large trucks are more likely to cause fatal accidents. In the section of environmental analysis, the results indicate that fatal accidents are more likely to occur on rainy days. However, in the absence of rain, fatal car accidents are less likely to happen on wet roads. When it comes to road patterns, fatal accidents occur at “roundabout” or “square” more compared to other type of roads. These results can be taken as references for insurance policy planning or traffic policy formulation.
    Reference: 一、 中文文獻
    王秀雯(2004)。應用資料挖掘技術於交通事故傷亡嚴重程度之研究。未出版之碩士論文。國立嘉義大學運輸與物流工程研究所,嘉義市。
    王銘亨(2016)。閃光號誌路口交通事故特性分析-以台南市為例。交通學報,第十六卷第一期,39-54。
    李昇暾(2001)。以資料採礦深化顧客關係管理。ARC CRM Insight,9-112。
    李偉豪、吳水威(2012)。交岔路口左轉車輛讓對向直行車輛先行意向之研究。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    李熙、馮拔、謝勇波、王文明(2019)。基於決策樹的司機駕駛行為研究。控制與信息技術,5(5)。
    李銘峰、陳桂霞(2016)。以資料探勘模式分析學習者情緒與色彩之關係架構。國立台中教育大學教育資訊與測驗統計研究所博士論文,台中市。
    林昱伶、許晉雄(2015)。以決策樹方法探討顧客消費行為之差異性分析-以連鎖醫美診所為例。未出版之碩士論文。東吳大學數學系碩士班,台北市。
    許曉彬、李敏波(2018)。基於ADTree改進算法的輪胎大數據質量分析。計算機系統應用,27(11),27-34。
    陳亭羽、賀千盈(2006)。應用決策樹探討適用於電子行銷市場之區隔基礎。管理科學研究,3(1),1-25。
    曾平毅、連瑋鑫(2020)。小客車車輛顏色與交通事故關聯性之初探。運輸計劃季刊,49(2),117-146。
    曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005)。資料探勘。台北市:旗標出版股份有限公司。
    黃士軒、汪進財(2006)。交叉路口雙車事故分析。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    黃俊華(2019)。決策樹應用於台灣主流社群平台之求職者廣告偏好探勘。未出版之碩士論文。國立政治大學企業管理研究所,台北市。
    黃韻芝(2006)。臺閩地區道路交通事故之研究。國立中央大學統計研究所學位論文,桃園市。
    黃顯欽(2011)。分析第一當事者影響A1, A2類肇事事故因素之研究。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    楊小軍、錢魯鋒、別緻(2018)。基於WEKA平台的決策樹算法比較研究。艦船電子工程,38(10),34-36。
    楊琇媛(2003)。利用資料倉儲與資料探勘技術於招生策略於學生特質分析之研究。未出版之碩士論文。中原大學管理碩士在職專班碩士論文,桃園市。
    樓玉玲(1998)。以資料挖掘分析政大通識課程。未出版之碩士論文。國立政治大學企業管理學系碩士班,台北市。
    蔡永祥、吳宗修(2007)。以數位式行車紀錄辨析高肇事大客車駕駛族群。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    謝宗螢(2018)。以資料探勘預測信用卡違約風險。未出版之碩士論文。國立屏東大學財務金融學系碩士班,屏東市。
    簡俊明、張新立(1988)。重型貨車肇事型態與影響因素之研究。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    蘇宥宜、汪進財(2004)。應用情境分析方法研究台灣地區單一小客車交通事故。未出版之碩士論文。國立交通大學運輸與物流管理學系碩士班,新竹市。
    內政部警政署交通事故公開資料網站(最後檢視日期:2020年11月1日)檢自: https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=92042&ctNode=12926
    行政院衛生福利部網站(最後檢視日期:2020年11月1日)檢自: https://www.mohw.gov.tw/mp-1.html

    二、 英文文獻
    Armstrong, A., & Hagel, J. (1997). Net gain: Expanding Markets Through Virtual Communities. Harvard Business School.
    Bayam, E., Liebowitz, J. and Agresti, W. (2005). Older Drivers and Accidents: A Meta Analysis and Data Mining Application on Traffic Accident Data. Expert System with Applications, Vol.29, Issue.3, 598-629.
    Berry, M. J., Linoff, G. S. (2004). Data Mining Techniques: for Marketing Sales, and Customer Relationship Management. John Wiley & Sons, Inc.
    Clarke D.D., Forsyth R., Wright R. (1998). “Behavioral factors in accidents at road junctions: the use of a genetic algorithm to extract descriptive rules from police case files”, Accident Analysis and Prevention, Vol.30, Issue.2, 223-234.
    Fayyad, U. W. (1996). Data Mining and Knowledge Discovery:Making Sense Out of Data. IEEE Expert, Vol.11, Issue.5, 22-23.
    Freund, Y., & Mason, L. (1999). The alternating decision tree learning algorithm. In icml, Vol.99, 124-133. Retrieved from https://cseweb.ucsd.edu/~yfreund/papers/ atrees.pdf
    Gicquel, L., Ordonneau, P., Blot, E., Toillon, C., Ingrand, P., & Romo, L. (2017). Description of various factors contributing to traffic accidents in youth and measures proposed to alleviate recurrence. Frontiers in Psychiatry, Vol.8. Article 94. Retrieved from https://www.frontiersin.org/articles/10.3389/fpsyt.2017.00094/ full.
    Goniewicz, K., Goniewicz, M., Pawłowski, W., Fiedor, P., & Lasota, D. (2017). Risk of road traffic accidents in children. Medical Studies/Studia Medyczne, Vol.33, Issue.2, 155-160.
    Kuge, N., Yamamura, T., Shimoyama, O., & Liu, A. (2000). A driver behavior recognition method based on a driver model framework. SAE Transactions, Vol.109, 469-476. Retrieved from http://www.jstor.org/stable/44686891
    Lankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A., & Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. Journal of Injury and Violence Research, Vol.6, Issue.2, 64-71.
    Mitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM, Vol. 42, Issue.11, 30-36.
    Nielsen, M. A. (2015). Neural Networks and Deep Learning, Vol. 25, San Francisco, CA: Determination press. Retrieved from http://neuralnetworksanddeeplearning. com
    Schapire, R. E., & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes. Retrieved from https://mitpress.mit.edu/sites/default/files/titles/ content/boosting_foundations_algorithms/chapter009.html.
    Venkataraman, N., Ulfarsson, G. F., & Shankar, V. N. (2013). Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type. Accident Analysis & Prevention, Vol. 59, 309-318. Retrieved from https://doi.org/10.1016/j.aap.2013.06.021.
    Zadeh, L. A., Klir, G. J., & Yuan, B. (1996). Fuzzy Sets. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, 394-432.
    Zhang, J., Lindsay, J., Clarke, K., Robbins, G., Mao, Y. (2000). “Factors affecting the severity of motor vehicle traffic crashes involving elderly drivers in Ontario’’. Accident Analysis and Prevention, Vol.32, Issue.1, 117-125.
    Zhuanglin, M., Chunfu, S., Hao, Y., and Sheqiang, M. (2009). “Analysis of the logistic model for accident severity on urban road environment”. 2009 IEEE Intelligent Vehicles Symposium, 983-987. Retrieved from https://ieeexplore.ieee.org/ document/5164414.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    107363013
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107363013
    Data Type: thesis
    DOI: 10.6814/NCCU202100188
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    301301.pdf3262KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback