政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/134088
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51080942      Online Users : 964
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134088


    Title: 物聯網架構下運用路程與停車場車流量實現停車推薦系統
    An IoT based parking recommendation system considering distance and parking lot flow
    Authors: 陳遠
    Chen, Yuan
    Contributors: 蔡子傑
    Tsai, Tzu-Chieh
    陳遠
    Chen, Yuan
    Keywords: 物聯網
    智慧城市
    智慧停車
    停車建議
    等候理論
    Internet of Things
    Smart city
    Smart parking
    Parking recommendation
    Queueing theory
    Date: 2021
    Issue Date: 2021-03-02 14:33:52 (UTC+8)
    Abstract: 在現今資訊爆炸且硬體發展日益先進的時代中,使用物聯網技術以其硬體與軟體架構進行應用並達到智慧城市目的之相關開發與建置正快速地發展中,而其中都市利用多種不同感測器與資料來進行停車行為的優化則成為相當熱門的議題,尤其在人口密集區域大量停車需求與眾多停車區域的環境中,停車行為的分配顯得更為重要。
    在本篇論文當中,我們建立出一套較符合真實情況的停車推薦系統解決都市中有停車需求者無法有效的利用城市中剩餘的停車空位,同時也可以避免都市中原已壅塞的交通量更加惡化,降低城市車流量負載,本研究透過將停車行為拆分成兩個部分並運用等候理論的公式模型推導進行真實情況的預測,第一部分為估計出有停車需求的使用者發出停車請求後直到經過系統分配到達推薦的停車場中間路途所需耗費的時間,並且將其時間用於第二部分預估停車場在經過路途預估所需時間後能保有空位之機率,藉此達到良好的停車成功率,減少車輛在經過漫漫長路到達後卻無位可停的機率
    最後使用SUMO交通模擬器進行實驗模擬,結果顯示在壅塞的都市交通環境中,使用本論文方法相較於傳統的決策方法能有效降低使用者停車總花費時間與到達後因車位已滿而失敗的機率。
    In the age of information explosion and advanced hardware development, the related exploitation and construction of using IoT (Internet of Things) technology with its hardware and software framework application to achieve the purpose of “smart city” is developing rapidly. The optimization of parking behavior using a variety of different sensors and data in cities has become a very popular and important issue. Especially in the environment of a large number of parking needs in densely populated areas with many parking areas, the allocation of parking behaviors is more important.
    In this thesis, we propose a parking recommendation system that conforms with the real situation to solve the parking problem by effectively using remaining parking space in the city. At the same time, it can also avoid worsening the traffic jam and thus, balance the traffic flow in the city. This research proposes the recommendation method by analyzing the parking behavior with two parts, and using the model of queuing theory. The first part is to estimate the time consumption from the parking request generated by the user to reaching the candidate parking lot. The time consumption from the first part will be used in the second part to calculate the probability of getting a free parking then. By this calculation, we can expect to achieve the better parking success rate,and avoid the cars to circle around for free parking space.
    To validation our model, we use the SUMO traffic simulator for experimental simulation. The results show that in a congested urban traffic environment, our method can effectively reduce the total time spent on parking and the failure probability of the parking space after arrival.
    Reference: [1] M. Caliskan, A. Barthels, B. Scheuermann and M. Mauve, "Predicting Parking Lot Occupancy in Vehicular Ad Hoc Networks," 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, Dublin, 2007, pp. 277-281,doi:10.1109/VETECS.2007.69.

    [2] Y. Geng and C. G. Cassandras, "New “Smart Parking” System Based on Resource Allocation and Reservations," in IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1129-1139, Sept. 2013, doi: 10.1109/TITS.2013.2252428.

    [3] Ma, J., Clausing, E., and Liu, Y., "Smart On-Street Parking System to Predict Parking Occupancy and Provide a Routing Strategy Using Cloud-Based Analytics," SAE Technical Paper 2017-01-0087, 2017, http://doi.org/10.4271/2017-01-0087.

    [4] C. Tang, X. Wei, C. Zhu, W. Chen and J. J. P. C. Rodrigues, "Towards Smart Parking Based on Fog Computing," in IEEE Access, vol. 6, pp. 70172-70185, 2018, doi: 10.1109/ACCESS.2018.2880972.

    [5] T. N. Pham, M. Tsai, D. B. Nguyen, C. Dow and D. Deng, "A Cloud-Based Smart-Parking System Based on Internet-of-Things Technologies," in IEEE Access, vol. 3, pp. 1581-1591, 2015, doi: 10.1109/ACCESS.2015.2477299.

    [6] L. CODECÁ, J. ERDMANN and J. HÄRRI, "A SUMO-Based Parking Management Framework for Large-Scale Smart Cities Simulations," 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 2018, pp. 1-8, doi: 10.1109/VNC.2018.8628417.

    [7] SUMO User Documentation
    https://sumo.dlr.de/docs/index.html

    [8] Takács, Lajos, . Introduction to the Theory of Queues. Vol. 584. New York: Oxford University Press, 1962.

    [9] T. Lin, H. Rivano and F. Le Mouël, "A Survey of Smart Parking Solutions," in IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 12, pp. 3229-3253, Dec. 2017, doi: 10.1109/TITS.2017.2685143.



    [10] Tsai, MF., Kiong, Y.C. & Sinn, A. Smart service relying on Internet of Things technology in parking systems. J Supercomput 74, 4315–4338 (2018). https://doi.org/10.1007/s11227-016-1875-8

    [11] K. S. Liu, J. Gao, X. Wu and S. Lin, "On-Street Parking Guidance with Real-Time Sensing Data for Smart Cities," 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 2018, pp. 1-9, doi: 10.1109/SAHCN.2018.8397113.

    [12] 停車大聲公:
    https://tw.parkinglotapp.com/

    [13] 北市好停車:
    https://tpis.pma.gov.tw/ParkInfo/taipeiparking

    [14] INRIX Parkme:
    https://www.parkme.com/operators
    Description: 碩士
    國立政治大學
    資訊科學系
    107753040
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107753040
    Data Type: thesis
    DOI: 10.6814/NCCU202100358
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    304001.pdf1857KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback