English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50754047      Online Users : 700
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/134019
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134019


    Title: 新世代智慧交通(ITS) -自動駕駛團體捷運系統創新接受模式之研究
    Next Generation ITS - A Study of Innovative Acceptance Model on Autonomous Group Rapid Transit System
    Authors: 黃英裕
    Stevenson, Ying-Yu, Huang
    Contributors: 洪為璽
    季延平

    Hung, Wei-Hsi
    Chi, Yan-Ping

    黃英裕
    Stevenson, Ying-Yu, Huang
    Keywords: 智慧交通
    自動駕駛
    團體捷運系統
    科技服務接受模式(TSE, TAM, UTAT2 or TOE )
    二階結構方程模型
    偏最小平方迴歸
    共享經濟
    體驗行銷/體驗管理/體驗經濟
    Experience Management
    Intelligent Transportation System, ITS
    Group Rapid Transit, GRT
    Autonomy Bus Rapid Transit, ART
    Technology Acceptance Theory (TAM, UTAT2 or TOE
    Technology, Sharing and Experience (TSE)
    Second-Phase SEM (Structural Equation Modeling)
    SmartPLS(PARTIAL LEAST SQUARES )
    Sharing Economy
    Date: 2021
    Issue Date: 2021-03-02 14:18:52 (UTC+8)
    Abstract: 近年隨著資通信及人工智慧技術的大幅耀進,傳統公共運輸的模式開始有了許多的轉型及變化,相關運輸系統結合了自動駕駛技術並透過新世代通信網路(4G/5G以及C-V2X)構成了「新世代智慧交通運輸服務-自動駕駛團體捷運系統GRT(Group Rapid Trasit)或ART(Autonomy Bus Rapit Transit)」;而GRT/ART這類響應式的交通運輸系統(DRTS: Demand Responsive Transit Service )是近年來在智慧城市中發展新世代智慧交通運輸服務的一個重要課題,目前世界各國無不投入眾多資源來積極導入這項創新服務,進行POC(Proof-of-Concept)或POS(Proof-of-Service)針對這樣的趨勢,台灣能成功導入並推廣到實際的運營面,將對整體交通運輸及科技產業發展有極大的助益。

    GRT/ART集合人工智慧、共享經濟、大眾交通、科技服務等眾多特性的服務系統,過去文獻中的資訊科技接受理論(TAM、UTAT2或TOE…等),並無法適切地解釋使用者的接受行為亦無法深入探討影響其採行意圖之因素,也無法發掘背後共同條件以及關鍵推力與阻力。
    本計畫將研究提出一個新的科技體驗協同消費的接受模式,先以質性的文獻回顧與分析,建構初步GRT科技體驗協同消費的模式:科技(Technology)、共享(Sharing)、體驗(Experience)(T.S.E.),該模式能解釋接受GRT/ART系統服務的關鍵接受因素,接著會透過問卷調查法來驗證TSE模式中的因素對使用者的使用意圖、使用與持續使用行為有何影響;本研究透過透過專家座談確認二階模型變數(SEM: Structural Equation Modeling)之間對TSE的解釋能力及區別性(獨立變數),最後使用SmartPLS統計分析軟體來進行模型的檢驗分析方法(主要是利用Bootstrapping來估計路徑係數) 驗證其中的關鍵影響因素,檢驗研究假說並探索關鍵路徑(Critical Path)。

    本研究發現針對現階段在台灣導入GRT/ART之關鍵因素影響使用者的使用意願(願意使用及持續使用),「科技」對持續使用影響最大(其中又以容易使用、可用性最為重要);「行動體驗」、「思考體驗」對吸引消費者搭乘最為有效,這可做為政府推動服務或業者發展業務,策略上優先投入資源的項目;但我們同時也發現「分享」及「科技」在對於「願意使用」的影響卻較不顯著,相關背景原因,於論文中詳述。此外,本研究亦提出TSE做為適切解釋與分析GRT/ART服務「接受度」的調查與研究模型,可做為未來政府各地方開闢GRT/ART路線及服務的一個適切地衡量模型,在投入大量建置經費前先進行可行性、旅運需求以及服務品質評估之客觀衡量方法。

    最後,本研究之假說之成立/不成立是以台灣環境為樣本進行問卷調查及統計分析;若未來業者將GRT服務推廣至國外,則須因背景文化或交通環境不同再進行調研,因為不同社會有不同的環境,如:公共運輸網路完整性(能否提供End-2-End服務)、運輸服務品質、成本/價格以及生活習慣…等,以上皆會影響服務接受度。此外本研究也因為時間與資源的限制,未來可進一步深入不同面向的問題或應用探討,如:採用此TSE模型對不同路線與方案可進行接受程度之比較,做為政府相關單位是否投入資源建置系統之依據;或是採用此TSE模型就同一個地區就不同服務或推廣階段(POC/POS/POB)進行調查與分析(觀察關鍵因是否改變),可做為運營業者提供服務調整策略參考依據。
    In recent years, with the rapid development of communication and artificial intelligence technology, traditional public transportation has transformed. The transportation systems combined self-driving technology and new communication networks (4G, 5G and C-V2X), forming a new generation of intelligent transportation services, including self-driving group MRT system, GRT (Group Rapid Transit), ART (Autonomy Bus Rapid Transit), and responsive transportation systems (DRTS, Demand Responsive Transit Service). In the past few years, developing intelligent transportation services have been an important isuue in smart cities. Countries around the world are investing resources to actively import POC (Proof-of-Concept) or POS (Proof-of-Service) services. Moreover, GRT has been successfully introduced and operated in Taiwan and it will greatly benefit the development of transportation and technology industries.

    GRT and ART are combinations of artificial intelligence, sharing economy, mass transportation and technology. Past literature has discussed GRT and ART by technology acceptance theory (TAM, UTAT2 or TOE..., etc.), while it could not explain user`s acceptance behavior, the factors influence its intention, the common situations, and the key thrusts and resistances.

    This thesis proposes a new technology acceptance model with qualitative literature review and analysis. First, the preliminary GRT technology experience co-consumption model was constructed. The model includes Technology, Sharing and Experience (TSE), which explain the key acceptance factors while adopting GRT and ART system services. Second, it verifies the TSE model through questionnaires. This study validates the interpretation and differentiation (independent variables) of TSE between second-phase SEM (Structural Equation Modeling) model variables through expert forum. Third, it analyse the model testing and analysis methods (primarily using Bootstrapping to estimate path coefficients) by SmartPLS to examine the hypotheses and critical paths.

    This study found several key factors while introducing GRT and ART to Taiwan. Firstly, “Technology” has the greatest impact on continuous use (ease-to-use and usability are the most outstanding among these). Secondly, “Action Experience” and “Thinking Experience” are the most important facors for attracting consumers to embark. The findings can be used as a strategic priority for Taiwan authorities to develope the services and operators` businesses. However, we can also tell that the impact of “Sharing” and “Technology” on “Willingness to Use” is less significant. In addition, this study proposes that TSE can be used as an appropriate survey and research model for explaining and analyzing the “Acceptance” of GRT and ART services. Furthermore, the government can use it as an appropriate measurement model for opening up GRT/ART routes and services in various places.

    Finally, the hypotheses in this study are based on Taiwan’s environment. The operators promote GRT services abroad will have to re-investigate according to their culture and traffic environment such as the integrity of public transportation network, the quality of transport services, living habits and so on. Moreover, due to time and resource constraints, further in-depth discussion of different-oriented issues or applications can be explored in the future. This study can be used as a reference for operators to provide service adjustment strategies.
    Reference: 1. Global status report on road safety 2015. Geneva: World Health Organization; 2015.
    2. Institute of Transportation, MOTC (2004),Manual for assessing the economic benefits of transportation construction projects.
    3. Institute of Transportation, MOTC (2015),2015 Taiwan Road Capacity Manual.
    4. Institute of Transportation, MOTC (2016),The investigation and analysis of driving cost and the promotion and application of the economic benefit assessment of traffic construction plan, the Ministry of Transport Transport Research Institute.
    5. Institute for Information Industry(2006) ,Industry innovation model analysis structure, the consortium corporate information industry policy committee special research report.
    6. National Police Agency, Ministry of Internal Affairs, 2017
    7. A Bakhtiar, B Purwanggono & N Metasari (2009) “World Academy of Science, Engineering & Technology” Volume 58, Pages 548-552.
    8. A Chin P Smith (1997) Automobile ownership and government policy: the economics of Singapore’s Vehicle Quota Scheme Transportation Research A 31 2 129–140
    9. Ahn, J.M., Koo, D.M. and Chang, H.S. (2012), “Different impacts of normative influences on proenvironmental purchasing behavior explained by differences in individual characteristics”, Journal of Global Scholars of Marketing Science: Bridging Asia and the World, Vol. 22 No. 2, pp. 163-182.
    10. Ala, M. V., Yang, H., & Rakha, H. (2016). Modeling evaluation of Eco—Cooperative adaptive cruise control in vicinity of signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 2559, 108–119.
    11. Alessandrini, A., Alfonsi, R., Site, P.D., Stam, D.: Preferences towards automated road public transport: results from European surveys. Transp. Res. Proc. 3, 139–144 (2014)
    12. Al-Mashari, M. and Zairi, M. (1999) BPR Implementation Process: An Analysis of Key Success and Failure Factors. Business Process Management Journal, 5, 87-112.
    13. A. Imawan, T. I. Damaiyanti, J. Kwon, "Road Traffic Analytic Query Processing Based on a Timeline Modeling", Big Data (BigData Congress) 2015 IEEE International Congress on, pp. 708-711, 2015.
    14. A. Jamshidnejad, M.J. Mahjoob, "Traffic simulation of an urban network system using agent-based modeling", Humanities Science and Engineering (CHUSER) 2011 IEEE Colloquium on, pp. 300-304, 2011.
    15. Amit, R., & Zott, C. (2001). “Value creation in e‐business”. Strategic management journal, 22(6‐7), 493-520.
    16. Ashford, N.A., Heaton, G.R., Maxwell, & McCleary-Jones, J. (1982). Environmental regulation of the automobile. Report CPA-82-1, Center for Policy Alternatives, Massachusetts Institute of Technology.
    17. Babiceanu, S., Gonzales, D., Parkany, E., & Hungate, B. N. (2016). Assessing the Wider Economic Benefits of Intelligent Transportation System Deployments: A Virginia Case Study. In Transportation Research Board 95th Annual Meeting (No. 16-0706).
    18. Baden-Fuller, C., & Morgan, M. S. (2010). Business models as models. Long range planning, 43(2), 156-171.
    19. Baker, D. A., & Crompton, J. L. (2000). Quality, satisfaction and behavioral intentions. Annals of Tourism Research, 27(3), 785–804
    20. B. A., P. B., & M. N. (2009). Maintenance function’s performance evaluation using adapted balanced scorecard model. World Academy of Science, Engineering & Technology 58.
    21. Balaji, P. G., & S. D. (2011). Type-2 “Fuzzy Logic Based Urban Traffic Management. Engineering Applications of Artificial Intelligence”, 24, 12-22.
    22. Bartley, B. (1995). Mobility impacts, reactions and opinions: traffic demand management options in Europe: the MIRO Project. Traffic engineering & control, 36(11), 596-602.
    23. Berry, L. L., Carbone, L. P., & Haeckel, S. H. (2002). Managing the total customer experience. MIT Sloan management review, 43(3), 85.
    24. Bertolini, L., & le Clerq, F. (2003). Urban development without more mobility by car? Lessons from Amsterdam, a multimodal urban region Environment and Planning A, 35, 575–589.10.1068/a3592
    25. Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370. doi:10.2307/3250921
    26. Black, K., Bellomo, S., Spillenkothen, R., Berman, W., & Chimini, L. (1992). Developing transportation demand management packages using transportation surveys: Case study. Transportation Research Record, (1346).
    27. Botsman, R., & Rogers, R. (2011). What`s mine is yours: how collaborative consumption is changing the way we live. London: Collins.
    28. Bradford, M., Earp, J. B., Grabski, S. (2014). Centralized End-to-End Identity and Access Management and ERP Systems: A Multi-Case Analysis using the Technology Organization Environment Framework. International Journal of Accounting Information Systems, 15(2), 149-165.
    29. Brakus, J. J., Schmitt, B. H., & Zarantonello, L. (2009). Brand experience: what is it? How is it measured? Does it affect loyalty?. Journal of marketing, 73(3), 52-68.
    30. Caches, C., & Mansouri, M. (2019, December). Applications of Systems Thinking for Scooter Sharing Transportation System. In International Conference on Complex Systems Design & Management (pp. 192-192). Springer, Cham.
    31. Castells, M. (2011). The rise of the network society: The information age: Economy, society, and culture (Vol. 1). John Wiley & Sons.
    32. Chang, T. H., Hung, C. C., Chuang, Y. H., Chiang, C. Y., & Lo, K. R. (2013). The Development of ITS Cloud Services in Taiwan. In 20th ITS World CongressITS Japan.
    33. Chatterjee, K., Sherwin, H., & Jain, J. (2013). Triggers for changes in cycling: The role of life events and modifications to the external environment. Journal of Transport Geography, 30, 183–193.10.1016/j.jtrangeo.2013.02.007
    34. Chaturvedi, M., & Srivastava, S. (2016). Multi-Modal Design of an Intelligent Transportation System. IEEE Transactions on Intelligent Transportation Systems.
    35. Chaves, R., & Monzón, J. L. (2012). Beyond the crisis: the social economy, prop of a new model of sustainable economic development. Service Business, 6(1), 5-26.
    36. Chen FH, H. H (2016) An alternative model for the analysis of detecting electronic industries earnings management using stepwise regression, random forest, and decision tree. Soft Comput 20:1945–1960
    37. Chen Y. T, Chiu Y. W, Chang Y. C, Lin C. W (2020) Ten-year retrospective study on mandibular fractures in central Taiwan. Journal of International Medical Research 48:7, pages 030006052091505.
    38. Coombe, D. P. G. A., Guest, P., Scholefield, G., & Skinner, A. (1997). Study of parking and traffic demand. 3. The effects of parking control strategies in Bristol. Traffic engineering & control, 38(4), 204-208.
    39. Daniel J. Fagnant and Kara Kockelman "Transportation Research Part A: Policy and Practice", 2015, vol. 77, issue C, 167-181
    40. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information Ttechnology. MIS Quarterly, 13, 319-339.
    41. Delbecq, A. L., Van de Ven, A. H., & Gustafson, D. H. (1975). Group techniques for program planning: a guide to nominal group and Delphi processes (Scott, Foresman and Co, Glenview (IL)).
    42. Dia, H. and K. Thomas, 2011. Development and evaluation of arterial incident detection models using fusion of simulated probe vehicle and loop detector data. Information Fusion, 12(1): 20-27.
    43. D. Milakis, B. van Arem, B. van Wee. (2017) Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems 21:4, pages 324-348.
    44. Drucker, P. F. (1994). The theory of the business. Harvard business review, 72(5), 95-104.
    45. E. Fatnassi, O. Chebbi, and J. Chaouachi, “Discrete honeybee mating optimization algorithm for the routing of battery-operated automated guidance electric vehicles in personal rapid transit systems,” Swarm and Evolutionary Computation, vol. 26, pp. 35–49, 2016.
    46. Evans L. Transportation safety. In: Hall RW, ed. Handbook of Transportation Science. 2nd ed. Norwell, Mass: Kluwer Academic Publishers; 2002:67–112.
    47. Ezzatul, A. D., Kee, D. M. H., Tuovi, H., Roslan, N. A. D. B., & Charlotte, S. (2019). Case Grab. International journal of Tourism and hospitality in Asia Pasific (IJTHAP), 2(2).
    48. Felson, M., & Spaeth, J. L. (1978). Community Structure and Collaborative Consumption:" A Routine Activity Approach". The American Behavioral Scientist, 21(4), 614.
    49. Ferguson, E. (1990). Transportation demand management planning, development, and implementation. Journal of the American Planning Association, 56(4), 442-456.
    50. Finger, M., & Audouin, M. (2018). The governance of smart transportation systems. Berlin: Springer.
    51. Gass, S. I., & Harris, C. M. (2001). Encyclopedia of Operations Research and Management Science: Centennial Edition. Springer Science & Business Media.
    52. Gilmore, J. H., & Pine, B. J. (2012). The Experience Economy, Updated Edition. Blackstone Audio.
    53. Guo, Y., Barnes, S.J. and Jia, Q. (2017) Mining Meaning from Online Ratings and Reviews: Tourist Satisfaction Analysis Using Latent Dirichlet Allocation. Tourism Management, 59, 467-483.
    54. Grewal, D., Levy, M., & Kumar, V. (2009). Customer experience management in retailing: An organizing framework. Journal of Retailing, 85(1), 1-14.
    55. G. D. Goodin, T. Starr Transportation Research Board, 1996 – 86
    56. Gwinner, K.P., Gremler, D.D. and Bitner, M.J. (1998), “Relational benefits in service industries: the customer’s perspective”, Journal of the Academy of Marketing Science, Vol. 26 No. 2, pp. 101-114.
    57. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall.
    58. Hamari, J., Sjöklint, M., & Ukkonen, A. (2015). The sharing economy: Why people participate in collaborative consumption. Journal of the Association for Information Science and Technology.
    59. Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the Association for Information Science and Technology, 67(9), 2047-2059.
    60. Hennig-Thurau, T., Henning, V., & Sattler, H. (2007). Consumer File Sharing of Motion Pictures. Journal of Marketing, 71(4), 1-18.
    61. Hensher, D.A.: Bus-based transitway or light rail? continuing the saga on choice versus blind commitment. Roads Transp. Res. 8(3), 3–21 (1999)
    62. Hill, K. Q., & Fowles, J. (1975). The methodological worth of the Delphi forecasting technique. Technological Forecasting and Social Change, 7(2), 179-192.
    63. Hoehle, H., Zhang, X., & Venkatesh, V. (2015). An espoused cultural perspective tounderstand continued intention to use mobile applications: a four-country study ofmobile social media application usability.European Journal of InformationSystems,24(3), 337-359.
    64. Hsu, M. H., Ju, T. L., Yen, C. H., & Chang, C. M. (2007). Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. International journal of human-computer studies, 65(2), 153-169.
    65. Hung, W.-H.; Hsu, Y.-T. Service Quality and Service Gap of Autonomous Driving Group Rapid Transit System. Sustainability 2020, 12, 9412.
    66. Https://en.wikipedia.org/wiki/Autonomous_Rail_Rapid_Transit (May 15, 2020)
    67. Huang, S. K., Kuo, L., & Chou, K. L. (2018). The impacts of government policies on green utilization diffusion and social benefits–A case study of electric motorcycles in Taiwan. Energy policy, 119, 473-486.
    68. Huré, M., & Waine, O. (2012). From Vélib to Autolib: private corporations involvement in urban mobility policy. Metro Politics, 25.
    69. IaCovou, et al. (1995) Electronic Data Interchange and Small Organisations: Adoption and Impact of Technology. MIS Quarterly, 19, 465-485.
    70. Idemudia, Efosa C. and Raisinghani, Mahesh S. (2014) "The Influence of Cognitive Trust and Familiarity on Adoption and Continued Use of Smartphones: An Empirical Analysis," Journal of International Technology and Information Management: Vol. 23 : Iss. 2 , Article 6.
    71. J. Jokinen, T. Sihvola, M. N. Mladenovic, “Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region, Transport Policy”, 10.1016/j.tranpol.2017.12.004, 76, (123-133), (2019).
    72. J. Kang and M. Kang, "Intrusion detection system using deep neural network for in-vehicle network security", PloS one, vol. 11, no. 6, pp. e0155781, 2016.
    73. J. Li, Z. Shen, "A real-time business intelligence system based on the ACP approach", Service Operations and Logistics and Informatics (SOLI) 2013 IEEE International Conference on, pp. 345-349, 2013.
    74. J. Navarro, Elsa, Yousfi, Jonathan, Deniel, Christophe, Jallais, M. Bueno, A. Fort. (2016) The impact of false warnings on partial and full lane departure warnings effectiveness and acceptance in car driving. Ergonomics 59:12, pages 1553-1564
    75. Joseph, A. E. , & Fuller, A. M. (1991). Towards an integrative perspective on the housing, services and transportation implications of rural aging. Canadian Journal on Aging, 10(2), 127-148.
    76. Jou, R. C., Hu, T. Y., & Lin, C. W. (1997). Empirical results from Taiwan and their implications for advanced traveler pretrip information systems. Transportation research record, 1607(1), 126-133.
    77. J.F. Tian, A.Y. Deng, "An IEB-oriented ITS model combined data mining with 3S technologies", Computer and Communication Technologies in Agriculture Engineering (CCTAE) 2010 International Conference On, vol. 2, pp. 316-319, 2010.
    78. J. Miller, J. P. How, "Demand estimation and chance-constrained fleet management for ride hailing", Intelligent Robots and Systems (IROS) 2017 IEEE/RSJ International Conference on, pp. 4481-4488, 2017.
    79. Kalakota, R. & Whinston, A. B. (1996), “Frontiers of Electronic Commerce,” Addison Wesley, Reading MA.
    80. K. R. Malik, M. Ahmad, S. Khalid, H. Ahmad, F. Al-Turjman, S. Jabbar, "Image and command hybrid model for vehicle control using Internet of Vehicles", Transactions on Emerging Telecommunications Technologies, pp. e3774, 2019.
    81. K. Athavan, G. Balasubramanian, S. Jagadeeshwaran, N. Dinesh, "Automatic Ambulance Rescue System", Advanced Computing & Communication Technologies (ACCT) 2012 Second International Conference on, pp. 190-195, 2012.
    82. Khoumbati (2006). “Evaluating the adoption of enterprise application integration in health-care organizations.” Journal of Management Information Systems. 22(4) 98 – 103
    83. K.L. Kowalski, Multiply Scattered Memories, contribution to FoldyFest, held at CWRU, April 29, 2000.
    84. Klodzinski, J. M. Al-Deek, H. E. and Radwan, A. . Evaluation of Vehicle Emissions at Electronic Toll Collection. Presented at 77th Annual Meeting of the Transportation Research Board, Washington, D.C., 1998
    85. Kramer, M. R. (2011). Creating shared value. Harvard business review, 89(1/2), 62-77.
    86. Kwon, T.H. and Zmud, R.W. (1987) Unifying the Fragmented Models of Information System’ Implementation. Critical Issues in Information System Research, 227-251.
    87. Lamberton, C., & Rose, R. (2012). When is ours better than mine? A framework for understanding and altering participation in commercial sharing systems. Journal of Marketing, 76, 109–125.
    88. Laura Serrano, Antonio Ariza-Montes, Martín Nader, Antonio Sianes, Rob Law. (2020) Exploring preferences and sustainable attitudes of Airbnb green users in the review comments and ratings: a text mining approach. Journal of Sustainable Tourism 0:0, pages 1-19.
    89. Lave, Lester B., et al. “Environmental Implications of Electric Cars.” Science, vol. 268, no. 5213, 1995, pp. 993–995. JSTOR. Accessed 31 Jan. 2021.
    90. LA Neilson "Boycott or buycott? Understanding political consumerism" Journal of Consumer Behaviour 9 (3), 214-227
    91. Lee & Kim (2007) "Aspect and cause of long term trend of climate in Ulleungdo and Dokdo Area" Korean Journal of Nature Conservation, 1 (1) (2007), pp. 19-28
    92. Levine, J. , Park, S. , Underwood, S. E. , and Wallace, R. R. . Stakeholder Preferences in Advanced Public Transportation System Planning, Journal of Public Transportation, Vol. 2, No. 2, 1999, pp. 25–45.
    93. Levine, J., & Underwood, S. E. (1996). A multiattribute analysis of goals for intelligent transportation system planning. Transportation Research Part C: Emerging technologies, 4(2), 97-111.
    94. Levinson, Herbert S., et al. 2002. “Bus Rapid Transit: An Overview”. Journal of Public Transportation, 5 (2): 1-30.
    95. L. Urquhart, H. Schnädelbach, N. Jäger. (2019) Adaptive Architecture: regulating human building interaction. International Review of Law, Computers & Technology 33:1, pages 3-33.
    96. Le Zhang, Jian Lan, "Extended Object Tracking Using Random Matrix With Skewness", Signal Processing IEEE Transactions on, vol. 68, pp. 5107-5121, 2020.
    97. Linton and S.T. Walsh"Roadmapping: From Sustainable to Disruptive Technologies" Volume 71, Issues 1–2,Pages 1-196 January–February 2004
    98. Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent Transportation System (ITS): Concept, Challenge and Opportunity. In 2017 IEEE 3rd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing,(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS) (pp. 167-172). IEEE Computer Society.
    99. Linstone, H. A., & Turoff, M. (Eds.). (1975). The Delphi method: Techniques and applications (Vol. 29). Reading, MA: Addison-Wesley.
    100. Logi, F., & Ritchie, S. G. (2001). Development and Evaluation of a Knowledge-Based System for Traffic Congestion Management and Control. Transportation Research Part C, 9, 433-459.
    101. Lu, S. M. (2016). A low-carbon transport infrastructure in Taiwan based on the implementation of energy-saving measures. Renewable and Sustainable Energy Reviews, 58, 499-509.
    102. L. W. Jung, K. Kim,E. Lee(2014) "A complexity metric for web applications based on the entropy theory" Asia-Pacific Software Engineering Conference Pages 511-518
    103. Magretta, J. (2002). Why business models matter. Harvard business review, 80(5), 86-92.
    104. M. van Essen, T. Thomas, C. Chorus, E. van Berkum. (2019) The effect of travel time information on day-to-day route choice behaviour: evidence from a real-world experiment. Transportmetrica B: Transport Dynamics 7:1, pages 1719-1742.
    105. Markosie, S, Allen, P. and Blythe, P.T. (2006) Smart Market Protocols for Road Transport. UK DTI Publication, Foresight IIS, London, July.
    106. Martins, C., Oliveira, T. and Popovic, A. (2014) . International Journal of Information Management, 34, 1-13.
    107. Masaki, "Machine-Vision Systems for Intelligent Transportation Systems", IEEE Intelligent Systems Massachusetts Institute of Technology, pp. 24-31, 1998.
    108. Mason, K., & Spring, M. (2011). The sites and practices of business models. Industrial Marketing Management, 40(6), 1032-1041.
    109. Meyer, M. D. (1999). Demand management as an element of transportation policy: using carrots and sticks to influence travel behavior. Transportation Research Part A: Policy and Practice, 33(7), 575-599.
    110. M. Ghantous, W. Nasserddine, M. Eshker, M. Mannah, "CWAS: A Hybrid Solution for Collision Warning and Avoidance", Computer and Applications (ICCA) 2017 International Conference on, pp. 180-184, 2017.
    111. Modarres, A. (1993). Evaluating employer-based transportation demand management programs. Transportation Research Part A: Policy and Practice, 27(4), 291-297.
    112. Moeller, Sabine, and K. Wittkowski (2010), “The Burdens of Ownership: Reasons for Preferring Renting,” Marketing Service Quality, 20 (2), 176–91.
    113. Möhlmann, M. (2015). Collaborative consumption: determinants of satisfaction and the likelihood of using a sharing economy option again. Journal of Consumer Behaviour,14(3), 193–207
    114. Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur`s business model: toward a unified perspective. Journal of business research, 58(6), 726-735.
    115. Mugion, R. G., Toni, M., Raharjo, H., Di Pietro, L., & Sebathu, S. P. (2018). Does the service quality of urban public transport enhance sustainable mobility?. Journal of Cleaner Production, 174, 1566-1587.
    116. Murry, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423.
    117. Neuman, B. C.,Medvinsky, G.(1995).Requirements for network payment: The NetCheque perspective.Digest of Papers on Technologies for the Information Superhighway. Compcon.
    118. Newholm, T., & Shaw, D. (2007). Studying the ethical consumer: A review of research [Editorial]. Journal of Consumer Behaviour, 6(5), 253–270
    119. Ng, V., & Kim, H. M. (2021). Autonomous vehicles and smart cities: A case study of Singapore. In Smart Cities for Technological and Social Innovation (pp. 265-287). Academic Press.
    120. Nikitas, A., Kougias, I., Alyavina, E., & N. Tchouamou, E. (2017). How can autonomous and connected vehicles, electromobility, BRT, hyperloop, shared use mobility and mobility-as-a-service shape transport futures for the context of smart cities?. Urban Science, 1(4), 36.
    121. N. Morgan. (2019) Cycling infrastructure and the development of a bicycle commuting socio-technical system: the case of Johannesburg. Applied Mobilities 4:1, pages 106-123.)
    122. Nordhaus, W. (1988). Can the share economy conquer stagflation?. The Quarterly Journal of Economics, 201-217.
    123. Nov, O., Naaman, M., & Ye, C. (2010). Analysis of participation in an online photo‐sharing community: A multidimensional perspective. Journal of the American Society for Information Science and Technology, 61(3), 555-566.
    124. Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42.
    125. N. Van Oort, O. Cats, "Improving Public Transport Decision Making Planning and Operations by Using Big Data: Cases from Sweden and the Netherlands", Intelligent Transportation Systems (ITSC) 2015 IEEE 18th International Conference on, pp. 19-24, 2015.
    126. Osterwalder, A., Pigneur, Y., & Tucci, C. L. (2005). Clarifying business models: Origins, present, and future of the concept. Communications of the association for Information Systems, 16(1), 1.
    127. Ozanne, P. Ballantine (2010) "Sharing as a form of anti‐consumption? An examination of toy library users" Journal of Consumer Behaviour DOI:10.1002/CB.334
    128. Palmer, A. (2010). Customer experience management: a critical review of an emerging idea. Journal of Services marketing, 24(3), 196-208.
    129. Peng Jing, H. Hu, F. Zhan, Y. Chen, Y. Shi, "Agent-Based Simulation of Autonomous Vehicles: A Systematic Literature Review", Access IEEE, vol. 8, pp. 79089-79103, 2020.
    130. Pia A. Albinsson, B. Yasanthi Perera (2012) "Alternative marketplaces in the 21st century: Building community through sharing events" J. Consumer Behav. volume 11, issue 4, P303-315
    131. Picoto, W., Bélanger, F. & Palma-dos-Reis, A. An organizational perspective on m-business: usage factors and value determination. Eur J Inf Syst 23, 571–592 (2014).
    132. Premkumar, G. and Roberts, M. "Adoption of new information technologies in rural small businesses," Omega (27), 1999, pp. 467-484.
    133. Purushothaman, B. M., Arunachalam, S., Srinivasan, R., & S. Babu, S. (2011). Emergency Response Management System for Mysore City. International Journal of Earth Sciences and Engineering, 4(1), 48-54.
    134. R. Ghosh, R Pragathi, S Ullas, S. Borra, "Intelligent transportation systems: A survey", Circuits Controls and Communications (CCUBE) 2017 International Conference on, pp. 160-165, 2017.)
    135. Ran, B., & Boyce, D. (2012). Modeling dynamic transportation networks: an intelligent transportation system oriented approach. Springer Science & Business Media.
    136. Ricart, Joan E. & Rodríguez, Miguel A. & Sanchez, Pablo, 2002. "Sustainable development and sustainability of competitive advantage: A dynamic and sustainable view of the firm," IESE Research Papers D/462, IESE Business School.
    137. R. Sharma, G. R. Kadambi, Y.A. Vershinin, K.N. Mukundan, "Dual Polarised Directional Communication Based Medium Access Control Protocol for Performance Enhancement of MANETs", Communication Systems and Network Technologies (CSNT) 2015 Fifth International Conference on, pp. 185-189, 2015.
    138. Robbins, S. P., & Judge, T. (2012). Essentials of Organizational Behavior. Boston: Pearson.
    139. Robert V. Kozinets, Jay M. Handelman "Adversaries of Consumption: Consumer Movements, Activism, and Ideology"Journal of Consumer Research, Volume 31, Issue 3, December 2004, Pages 691–
    140. R. Pinto, A. Lagorio, R Golini. (2019) The location and sizing of urban freight loading/unloading lay-by areas. International Journal of Production Research 57:1, pages 83-99.
    141. Rodier, C. J., & Johnston, R. A. (1997). Incentives for local governments to implement travel demand management measures. Transportation Research Part A: Policy and Practice, 31(4), 295-308.
    142. Rogers, E. M. (1995) Diffusion of Innovations, 4th edn. Free Press, New York.
    143. Roggeveen, A. L., & Schlesinger, L. (2008). Customer Experience Creation: Determinants, Dynamics and Management Strategies. Journal of Retailing.
    144. Rosenbloom, S., & Burns, E. (1993). Gender differences in commuter travel in Tucson: implications for travel demand management programs. University of California Transportation Center.
    145. Rosenbloom, S., & Burns, E. (1994). Why working women drive alone: Implications for travel reduction programs. University of California Transportation Center.
    146. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
    147. Saaty, T. L., & Vargas, L. G. (1991). The Logic of Priorities: Applications in Business Energy, Health, and Transportation (Vol. 3). RWS Publications.
    148. Saaty, T.L.(1980). The Analytic Hierarchy Process. NY,USA: McGraw Hill.
    149. Saka, A. A. and Agboh, D. K. . Assessment of Operational Benefits of Electronic Toll Collection in Baltimore Metropolitan Area. Presented at 81st Annual Meeting of the Transportation Research Board, Washington, D.C., 2002
    150. Satty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. RWS Publication.
    151. S.C. Chang et al. “Evaluating Taiwan’s air quality variation trends using grey system theory” Journal of the Chinese Institute of Engineers 2007
    152. Schmitt, B. H. (2000 ). Experiential marketing: How to get customers to sense, feel, think, act, relate. Simon and Schuster.
    153. Schmitt, B. H. (2010). Customer experience management: A revolutionary approach to connecting with your customers. John Wiley & Sons.
    154. Schmitt, B. (1999a). Experiential marketing. Journal of Marketing Management, 15(1-3), 53-67.
    155. Schmitt, B. (1999b). Experiential marketing: How to get customers to SENSE, feel, think, act, and relate to your company and brands. New York: Free Press
    156. Schuitema, G. & de Groot, J. I. M., 2015, In : Journal of Consumer Behaviour. 14, 1, p. 57-69
    157. S. Gnanapriya, R. Suganya, G. S. Devi and M. S. Kumar, “Data Mining Concepts and Techniques. Data Mining and Knowledge Engineering”, vol. 2, p. 256-263, 2010.
    158. Shafer, S. M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business horizons, 48(3), 199-207.
    159. S. Tayeb, S. Latifi, "Improving Discovery Using Meta-Heuristic Echolocation", Systems Engineering (ICSEng) 2017 25th International Conference on, pp. 169-175, 2017.
    160. Stocker, A., & Shaheen, S. (2018). Shared automated mobility: early exploration and potential impacts. Road Vehicle Automation 4, 125-139.
    161. Tai T. T, S. E., & Veraart, F. C. A. (2018). Making the bicycle Dutch: the development of the bicycle industry in the Netherlands, 1860-1940. Technology and Change in History, 15.
    162. Tao, C. C., Chiang, H. Y. (2003) A before-and-after study on a travel aid for work trips of blind and visually impaired people in Taipei, Final Report, Labor Bureau of Taipei City Government.
    163. Tate, J. F., & Bell, M. C. (2000). Evaluation of a traffic demand management strategy to improve air quality in urban areas. In Road Transport Information and Control, 2000. Tenth International Conference on (Conf. Publ. No. 472) (pp. 158-162). IET.
    164. T. Bécsi, S. Aradi, P. Gáspár, "Educational Frameworks for Vehicle Mechatronics", Intelligent Transportation Systems IEEE Transactions on, vol. 16, no. 6, pp. 3534-3542, 2015.
    165. Tornatzky, L. G., & Klein, K. J. (1982). Innovation Characteristics and Innovation Adoption-Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering Management, 29, 28-45.
    166. Tsaur, S.H., Chiu, Y.T. and Wang, C.H. (2007) The Visitors Behavioral Consequences of Experiential Marketing: An Empirical Study on Taipei Zoo. Journal of Travel and Tourism Marketing, 21, 47-64.
    167. V. Nguyen, D. N. M. Dang, S. Jang, C. S. Hong, "e-VeMAC: An enhanced vehicular MAC protocol to mitigate the exposed terminal problem", Network Operations and Management Symposium (APNOMS) 2014 16th Asia-Pacific, pp. 1-4, 2014.
    168. Van Goeverden, K., Nielsen, T. S., Harder, H., & Van Nes, R. (2015). Interventions in bicycle infrastructure, lessons from Dutch and Danish cases. Transportation Research Procedia, 10, 403-412.
    169. Venkatesh, V., Thong, J. Y., & Xu, X. (2012).Consumer acceptance and use of information Technology: extending the unified theory of acceptance and use of Technology. MIS Quarterly, 36(1), 157-178.
    170. Verhoef, P. C. (2003). Understanding the effect of customer relationship management efforts on customer retention and customer share development. Journal of marketing, 67(4), 30-45.
    171. V. Milanes, J. Perez, E. Onieva, C. Gonzalez, T. de Pedro, "Electric power controller for steering wheel management in electric cars", Compatibility and Power Electronics 2009. CPE `09., pp. 444-449, 2009
    172. Wahyono, K. Jo, "A comparative study of classification methods for traffic signs recognition", Industrial Technology (ICIT) 2014 IEEE International Conference on, pp. 614-619, 2014.
    173. Wey, W. M., & Huang, J. Y. (2018). Urban sustainable transportation planning strategies for livable City`s quality of life. Habitat International, 82, 9-27.
    174. Wilbert den Hoed, H. Jarvis. (2021) Normalising cycling mobilities: an age-friendly approach to cycling in the Netherlands. Applied Mobilities 0:0, pages 1-21.
    175. W. J Clardy, "Tolley Coaches and PCC Street Cars Provide Successful City Transportation", American Institute of Electrical Engineers Transactions of the, vol. 66, no. 1, pp. 925-929, 1947
    176. Yang, S., Song, Y., Chen, S., & Xia, X. (2017). Why are customers loyal in to sharing-economy services? A relational benefits perspectives. Journal of Services Marketing, 31(1), 48–62.
    177. Yan, Y., et al., 2012. Bus transit travel time reliability evaluation based on automatic vehicle location data. Journal of Southeast University, 28(1): 100-105.
    178. Yin, R. (1994). Case study research: Design and methods . B. Hills.
    179. Y. Bie, D. Wang, X. Qu, "Modelling correlation degree between two adjacent signalised intersections for dynamic subarea partition", Intelligent Transport Systems IET, vol. 7, no. 1, pp. 28-35, 2013.
    180. Y. Zhou, K. C. Dey, M. Chowdhury, K. Wang, "Process for evaluating the data transfer performance of wireless traffic sensors for real-time intelligent transportation systems applications", Intelligent Transport Systems IET, vol. 11, no. 1, pp. 18-27, 2017.
    181. Zhang & Guohua, 2007, Application of the Advanced Public Transport System in Cities of China and the Prospect of Its Future Development, Journal of Transportation Systems Engineering and Information Technology, Volume 7, Issue 5, October 2007, Pages 24-30
    182. Zhang, J., Liaoa, F., Arentzea, T., & T. H. (2011). A Multimodal Transport Network Model for Advanced Traveler Information Systems. Procedia Computer Science, 5, 912-919.
    183. Zhang, J., Wang, F. Y., Wang, K., Lin, W. H., Xu, X., & Chen, C. (2011). Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624-1639.
    184. Zeithaml, V. A. 1988. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidences. Journal of Marketing, 52 (3): 2-22. doi: 10.2307/ 1251446
    185. Zhenlin, W., Peng, Z., & Shulin, A. (2012). Efficiency Evaluation of Beijing Intelligent Traffic Management System Based on super-DEA. Journal of Transportation Systems Engineering and Information Technology, 12(3).
    Description: 博士
    國立政治大學
    資訊管理學系
    98356502
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098356502
    Data Type: thesis
    DOI: 10.6814/NCCU202100364
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback