English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50804915      Online Users : 828
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/133844
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/133844


    Title: 應用標籤鑲嵌樹架構於解決多元分類問題
    Label Embedding Tree for Multi-class Classification
    Authors: 林威均
    Lin, Wei-Chun
    Contributors: 周珮婷
    黃佳慧

    Chou, Pei-Ting
    Huang, Chia-Hui

    林威均
    Lin, Wei-Chun
    Keywords: 機器學習
    多元分類
    多元轉二元分類
    Machine learning
    Multi-class classification
    Multi-class to binary classification
    Date: 2021
    Issue Date: 2021-02-01 13:59:51 (UTC+8)
    Abstract: 在監督式的機器學習中,多類別的分類是指具有兩個以上類別的分類任務,並把每個樣本標記為其中一個類別,由於目前較常使用的多分類方法通常都對資料母體分配有所假設,或是調參較為複雜耗時,因此想要提出一個不需要母體假設,而且調參相對容易的多分類方法。本次研究所提出的方法,透過定義並計算多類別資料中,類別標籤之間的距離矩陣,以此對類別標籤進行階層式的分群,達到拆解多元分類問題的目的,然後利用這個階層樹的架構,對未分類的樣本進行多個無須資料母體假設,基於偽概似的二元分類,最終得到分類結果。本研究將所提出的分類方法應用於不同的數據集中,並與其他常見的多元分類方法進行比較,發現在不同指標下有較高的精確度,另外,本研究更進一步利用基於相互熵篩選的變數子集合提出一個多階段分類方法,發現分類準確度在連續型的數據中有所提升。
    In supervised machine learning, multi-class classification refers to a classification task with more than two categories, and each sample is marked as one of the categories. Since the commonly used multi-classification methods usually have assumptions about the distribution of data populations, or the adjustment of hyperparameters is complicated and time-consuming, we want to propose a method that does not require a population assumption and is relatively easy to adjust hyperparameters. This proposed method dismantling multiple classification problems into binary classification problems by defining and calculating the distance matrix between the category labels in the multi-class data, making a hierarchical tree between different label to disassemble the multiple classification problem, and then based on the structure of this hierarchical tree, perform multiple pseudo-likelihood binary classification on unclassified samples, and get the classification results. In this research, the target method is applied into different data sets, and compared with other common multivariate classification methods, the accuracy and macro F1 score of our target method is quite good. In addition, we propose a multi-step method to improve the classification result with the variable chosen by mutual entropy, and the result of test dataset is indeed improved.
    Reference: Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multi-class to binary: A unifying approach for margin classifiers. Journal of machine learning research, 1(Dec), 113-141.

    Anthony, G., Gregg, H., & Tshilidzi, M. (2007). Image classification using SVMs: one-against-one vs one-against-all. arXiv preprint arXiv:0711.2914.

    Baloochian, H., & Ghaffary, H. R. (2019). Multi-class Classification Based on Multi- criteria Decision-making. Journal of Classification, 36(1), 140-151.

    Bouazizi, M., & Ohtsuki, T. (2016, May). Sentiment analysis: From binary to multi- class classification: A pattern-based approach for multi-class sentiment analysis in Twitter. In 2016 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.

    Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.

    Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

    Casasent, D., & Wang, Y. C. (2005, July). Automatic target recognition using new support vector machine. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. (Vol. 1, pp. 84-89). IEEE.

    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine l earning, 20(3), 273-297.

    Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Łukasik, S., & Żak, S. (2010). Complete gradient clustering algorithm for features analysis of x-ray images. In Information technologies in biomedicine (pp. 15-24). Springer, Berlin, Heidelberg.

    Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.

    Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215-232.

    Crammer, K., & Singer, Y. (2002). On the learnability and design of output codes for multi-class problems. Machine learning, 47(2-3), 201-233.

    Dietterich, T. G., & Bakiri, G. (1995). Solving multi-class learning problems via error-correcting output codes. CoRR. arXiv preprint cs.AI/9501101, 66.

    Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley & Sons.

    Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3), 349-360.

    Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017, October). A deep CNN based multi-class classification of Alzheimer`s disease using MRI. In 2017 IEEE International Conference on Imaging systems and techniques (IST) (pp. 1-6). IEEE.

    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188.

    Fushing, H., Liu, S. Y., Hsieh, Y. C., & McCowan, B. (2018). From patterned response dependency to structured covariate dependency: Entropy based categorical-pattern-matching. PloS one, 13(6), e0198253.

    Hafner, M., Kwitt, R., Wrba, F., Gangl, A., Vécsei, A., & Uhl, A. (2008). One- against-one classification for zoom-endoscopy images.

    Hastie, T., & Tibshirani, R. (1997). Classification by pairwise coupling. Advances in neural information processing systems, 10, 507-513.

    Hsieh, F., & Chou, E. P. (2020). Categorical Exploratory Data Analysis: From Multi-class Classification and Response Manifold Analytics perspectives of baseball pitching dynamics. arXiv preprint arXiv:2006.14411.

    Kang, S., Cho, S., & Kang, P. (2015). Constructing a multi-class classifier using one- against-one approach with different binary classifiers. Neurocomputing, 149, 677-682.

    Kim, K. I., Jung, K., Park, S. H., & Kim, H. J. (2002). Support vector machines for texture classification. IEEE transactions on pattern analysis and machine intelligence, 24(11), 1542-1550.

    La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., & Moore, J. H. (2019). Multidimensional genetic programming for multi-class classification. Swarm and evolutionary computation, 44, 260-272.

    Lei, H., & Govindaraju, V. (2005, June). Half-against-half multi-class support vector machines. In International Workshop on Multiple Classifier Systems (pp. 156-164). Springer, Berlin, Heidelberg.

    Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International journal of remote sensing, 26(5), 1007-1011.

    Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn.

    Quinlan, J. R. (1993). C4. 5: programs for machine learning. Elsevier.

    Rajab, A., Huang, C. T., Al-Shargabi, M., & Cobb, J. (2016, November). Countering burst header packet flooding attack in optical burst switching network. In International Conference on Information Security Practice and Experience (pp. 315-329). Springer, Cham.

    Schwenker, F., & Palm, G. (2001, July). Tree-structured support vector machines for multi-class pattern recognition. In International Workshop on Multiple Classifier Systems (pp. 409-417). Springer, Berlin, Heidelberg.
    Description: 碩士
    國立政治大學
    統計學系
    108354005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108354005
    Data Type: thesis
    DOI: 10.6814/NCCU202100115
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400501.pdf3252KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback