Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/133844
|
Title: | 應用標籤鑲嵌樹架構於解決多元分類問題 Label Embedding Tree for Multi-class Classification |
Authors: | 林威均 Lin, Wei-Chun |
Contributors: | 周珮婷 黃佳慧 Chou, Pei-Ting Huang, Chia-Hui 林威均 Lin, Wei-Chun |
Keywords: | 機器學習 多元分類 多元轉二元分類 Machine learning Multi-class classification Multi-class to binary classification |
Date: | 2021 |
Issue Date: | 2021-02-01 13:59:51 (UTC+8) |
Abstract: | 在監督式的機器學習中,多類別的分類是指具有兩個以上類別的分類任務,並把每個樣本標記為其中一個類別,由於目前較常使用的多分類方法通常都對資料母體分配有所假設,或是調參較為複雜耗時,因此想要提出一個不需要母體假設,而且調參相對容易的多分類方法。本次研究所提出的方法,透過定義並計算多類別資料中,類別標籤之間的距離矩陣,以此對類別標籤進行階層式的分群,達到拆解多元分類問題的目的,然後利用這個階層樹的架構,對未分類的樣本進行多個無須資料母體假設,基於偽概似的二元分類,最終得到分類結果。本研究將所提出的分類方法應用於不同的數據集中,並與其他常見的多元分類方法進行比較,發現在不同指標下有較高的精確度,另外,本研究更進一步利用基於相互熵篩選的變數子集合提出一個多階段分類方法,發現分類準確度在連續型的數據中有所提升。 In supervised machine learning, multi-class classification refers to a classification task with more than two categories, and each sample is marked as one of the categories. Since the commonly used multi-classification methods usually have assumptions about the distribution of data populations, or the adjustment of hyperparameters is complicated and time-consuming, we want to propose a method that does not require a population assumption and is relatively easy to adjust hyperparameters. This proposed method dismantling multiple classification problems into binary classification problems by defining and calculating the distance matrix between the category labels in the multi-class data, making a hierarchical tree between different label to disassemble the multiple classification problem, and then based on the structure of this hierarchical tree, perform multiple pseudo-likelihood binary classification on unclassified samples, and get the classification results. In this research, the target method is applied into different data sets, and compared with other common multivariate classification methods, the accuracy and macro F1 score of our target method is quite good. In addition, we propose a multi-step method to improve the classification result with the variable chosen by mutual entropy, and the result of test dataset is indeed improved. |
Reference: | Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multi-class to binary: A unifying approach for margin classifiers. Journal of machine learning research, 1(Dec), 113-141.
Anthony, G., Gregg, H., & Tshilidzi, M. (2007). Image classification using SVMs: one-against-one vs one-against-all. arXiv preprint arXiv:0711.2914.
Baloochian, H., & Ghaffary, H. R. (2019). Multi-class Classification Based on Multi- criteria Decision-making. Journal of Classification, 36(1), 140-151.
Bouazizi, M., & Ohtsuki, T. (2016, May). Sentiment analysis: From binary to multi- class classification: A pattern-based approach for multi-class sentiment analysis in Twitter. In 2016 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Casasent, D., & Wang, Y. C. (2005, July). Automatic target recognition using new support vector machine. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. (Vol. 1, pp. 84-89). IEEE.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine l earning, 20(3), 273-297.
Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Łukasik, S., & Żak, S. (2010). Complete gradient clustering algorithm for features analysis of x-ray images. In Information technologies in biomedicine (pp. 15-24). Springer, Berlin, Heidelberg.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215-232.
Crammer, K., & Singer, Y. (2002). On the learnability and design of output codes for multi-class problems. Machine learning, 47(2-3), 201-233.
Dietterich, T. G., & Bakiri, G. (1995). Solving multi-class learning problems via error-correcting output codes. CoRR. arXiv preprint cs.AI/9501101, 66.
Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley & Sons.
Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3), 349-360.
Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017, October). A deep CNN based multi-class classification of Alzheimer`s disease using MRI. In 2017 IEEE International Conference on Imaging systems and techniques (IST) (pp. 1-6). IEEE.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188.
Fushing, H., Liu, S. Y., Hsieh, Y. C., & McCowan, B. (2018). From patterned response dependency to structured covariate dependency: Entropy based categorical-pattern-matching. PloS one, 13(6), e0198253.
Hafner, M., Kwitt, R., Wrba, F., Gangl, A., Vécsei, A., & Uhl, A. (2008). One- against-one classification for zoom-endoscopy images.
Hastie, T., & Tibshirani, R. (1997). Classification by pairwise coupling. Advances in neural information processing systems, 10, 507-513.
Hsieh, F., & Chou, E. P. (2020). Categorical Exploratory Data Analysis: From Multi-class Classification and Response Manifold Analytics perspectives of baseball pitching dynamics. arXiv preprint arXiv:2006.14411.
Kang, S., Cho, S., & Kang, P. (2015). Constructing a multi-class classifier using one- against-one approach with different binary classifiers. Neurocomputing, 149, 677-682.
Kim, K. I., Jung, K., Park, S. H., & Kim, H. J. (2002). Support vector machines for texture classification. IEEE transactions on pattern analysis and machine intelligence, 24(11), 1542-1550.
La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., & Moore, J. H. (2019). Multidimensional genetic programming for multi-class classification. Swarm and evolutionary computation, 44, 260-272.
Lei, H., & Govindaraju, V. (2005, June). Half-against-half multi-class support vector machines. In International Workshop on Multiple Classifier Systems (pp. 156-164). Springer, Berlin, Heidelberg.
Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International journal of remote sensing, 26(5), 1007-1011.
Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn.
Quinlan, J. R. (1993). C4. 5: programs for machine learning. Elsevier.
Rajab, A., Huang, C. T., Al-Shargabi, M., & Cobb, J. (2016, November). Countering burst header packet flooding attack in optical burst switching network. In International Conference on Information Security Practice and Experience (pp. 315-329). Springer, Cham.
Schwenker, F., & Palm, G. (2001, July). Tree-structured support vector machines for multi-class pattern recognition. In International Workshop on Multiple Classifier Systems (pp. 409-417). Springer, Berlin, Heidelberg. |
Description: | 碩士 國立政治大學 統計學系 108354005 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108354005 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202100115 |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
400501.pdf | | 3252Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|