English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51578807      Online Users : 965
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/132232
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/132232


    Title: PSLCNN: Protein Subcellular Localization Prediction for Eukaryotes and Prokaryotes Using Deep Learning
    Authors: 張家銘
    Chang, Jia-Ming
    Chang, Che-Yu
    Hsu, Tz-Wei
    Contributors: 資科系
    Keywords: Deep learning;protein localization;convolutional neural networks
    Date: 2019-11
    Issue Date: 2020-10-27 13:48:28 (UTC+8)
    Abstract: Many machine learning methods have been used to predict prokaryotic and eukaryotic protein subcellular localization. As most algorithms involve specific feature engineering, we carry out prediction using the feature-free property of deep learning methods. We present PSLCNN, a model using deep neural networks to predict protein subcellular localization for eukaryotes and prokaryotes. Only sequence information is needed (FASTA format). The model uses 1D convolution and predicts where the query localizes. It was trained and tested on an un-redundant dataset from the latest UniProt release, only for data with experimental annotation. Compared with the state-of-the-art tools, PSLCNN achieves the best performance for prokaryotes and is comparable for eukaryotes. We have also implemented a free PSLCNN web service available at https://github.com/changlabtw/PSLCNN.
    Relation: International Conference on Technologies and Applications of Artificial Intelligence, Taiwanese Association for Artificial Intelligence
    Data Type: conference
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    111.pdf915KbAdobe PDF2250View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback