English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51952489      Online Users : 860
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131939


    Title: 社群媒體異常帳號探勘系統的設計與實作
    Design and Implementation of the Intelligent Discovery System to Explore Malicious Accounts over Social Media
    Authors: 蕭君弘
    Hsiao, Chun-Hung
    Contributors: 沈錳坤
    Shan, Man-Kwan
    蕭君弘
    Hsiao, Chun-Hung
    Keywords: 異常帳號
    智慧型探勘系統
    以例探索
    Malicious Account
    Intelligent Discovery System
    Explore By Examples
    Date: 2020
    Issue Date: 2020-09-02 13:15:45 (UTC+8)
    Abstract: 近年來社群媒體越來越興盛,改變了大眾接收資訊的習慣。社群媒體上的話語權也成了不同陣營攻防的重點。因此社群媒體上開始出現越來越多行為可疑的異常帳號,試圖操弄輿論引導風向,藉此獲得自身的利益。
    本論文研究開發一個社群媒體上的異常帳號探勘分析,透過發文及留言互動行為探索分析異常帳號。本系統的核心精神為由已知的異常帳號找出其他未知異常帳號。系統提供兩大主要功能Explore By Examples及Analysis By Examples。前者著重在探索異常帳號、後者著重在分析異常行為。兩大功能都由作息、來源IP、回應行為、網絡四個面向來探索分析,以協助使用者探索出異常帳號。本論文以台灣最熱門的本土社群媒體平台PTT BBS資料進行實證,並根據PTT官方公告異常帳號運用本系統進行案例分析。
    In recent years, with the growth of social media, public`s habits of receiving information have been changed. More and more malicious accounts appear on social media. These malicious accounts try to manipulate public opinion for spin control to gain their own interests.
    This thesis aims at the design and implementation of an intelligent discovery system to explore malicious accounts over social media. The core spirit of the developed system lies in the exploration of unknown malicious accounts by known malicious accounts over social media. Two main functions provided by the developed system are exploration by examples and analysis by examples. While the former focuses on exploration of unknown malicious accounts, the latter focuses on the analysis of known ones. To explore and analyze malicious account, four aspects of malicious behaviors are considered, namely activity, IP address, like/dislike behaviors, and network. The developed system is verified on the data collected from PTT bulletin board system, which is the most popular domestic social media service in Taiwan. Four case studies are performed to demonstrate the superiority of the developed intelligent discovery system.
    Reference: [1] K. S. Adewole, N. B. Anuar, A. Kamsin, K. D. Varathan and S. A. Razak, Malicious Accounts: Dark of the Social Networks, Journal of Network and Computer Applications, 79, pp. 41-67, 2016.
    [2] A. Badawy, E. Ferrara and K. Lerman, Analyzing the Digital Traces of Political Manipulation: The 2016 Russian Interference Twitter Campaign, The 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 258-265, 2018.
    [3] N. Chavoshi, H. Hamooni and A. Mueen, Temporal Patterns in Bot Activities, International Conference on World Wide Web Companion, pp. 1601-1606, 2017.
    [4] N. Chavoshi, H. Hamooni, and A. Mueen, DeBot: Twitter Bot Detection via Warped Correlation, IEEE International Conference on Data Mining, pp. 817-822, 2016.
    [5] N. Chavoshi, H. Hamooni, and A. Mueen, Identifying Correlated Bots in Twitter, International Conference on Social Informatics, pp. 14-21, 2016.
    [6] L. A. Cornelissen, R. J. Barnett, P. Schoonwinkel, B. D. Eichstadt and H. B. Magodla, A Network Topology Approach to Bot Classification, Annual Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 79-88, 2018.
    [7] C. A. Davis, O. Varol, E. Ferrara, A. Flammini and F. Menczer, BotOrNot: A System to Evaluate Social Bots, International Conference Companion on World Wide Web, pp. 273-274, 2016.
    [8] A. Duh, M. S. Rupnik, and D. Korošak, Collective Behavior of Social Bots Is Encoded in Their Temporal Twitter Activity, Big Data 6, 2, pp. 113-123, 2018.
    [9] S. Gokalp, M. Temkit, H. Davulcu, and I.H. Toroslu, Partitioning and Scaling Signed Bipartite Graphs for Polarized Political Blogosphere, IEEE International Conference on Social Computing, pp. 168-173, 2013.
    [10] S. Gupta, P. Kumaraguru, and T. Chakraborty, MalReG: Detecting and Analyzing Malicious Retweeter Groups, ACM India Joint International Conference on Data Science and Management of Data, pp. 61-69, 2019.
    [11] M. Jiang, P. Cui and C. Faloutsos, Suspicious Behavior Detection: Current Trends and Future Directions, IEEE Intelligent Systems, 31, 1, pp. 31-39, 2016.
    [12] A. Karataş and S. Şahin, A Review on Social Bot Detection Techniques and Research Directions, International Security and Cryptology Conference, Turkey, pp. 156-161, 2017.
    [13] T. Khaund, K. K. Bandeli, M. N. Hussain, A. Obadimu, S. Al-Khateeb and N. Agarwal, Analyzing Social and Communication Network Structures of Social Bots and Humans, The 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 794-797, 2018.
    [14] S. Kudugunta and E. Ferrara, Deep Neural Networks for Bot Detection, Information Sciences, 467, pp. 312-322, 2018.
    [15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, International Conference on Learning Representations, abs/1301.3781, 2013.
    [16] S. Sadiq, Y. Yan, A. Taylor, M. L. Shyu, S. C. Chen and D. Feaster, AAFA: Associative Affinity Factor Analysis for Bot Detection and Stance Classification in Twitter, 2017 IEEE International Conference on Information Reuse and Integration, pp. 356-365, 2017.
    [17] H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Trans Acoustics Speech Signal Process, 26, pp. 43-49, 1978.
    [18] R. Schuchard, A. Crooks, A. Stefanidis and A. Croitoru, Bots in Nets: Empirical Comparative Analysis of Bot Evidence in Social Networks, L.M. Aiello, C. Cherifi, H. Cherifi et al.(eds) Complex networks and their applications VII. Springer International Publishing, pp. 424-436, 2019.
    [19] Y. Wang, C. Wu, K. Zheng, and X. Wang, Social Bot Detection Using Tweets Similarity, International Conference on Security and Privacy in Communication Systems, pp. 63-78, 2018.
    [20] 黃懷萱,利用行為脈絡探索社群媒體上的異常使用者,國立政治大學資訊科學系碩士論文,2020。
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    107971020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107971020
    Data Type: thesis
    DOI: 10.6814/NCCU202001683
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    102001.pdf14046KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback