政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/131937
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113648/144635 (79%)
造訪人次 : 51593248      線上人數 : 763
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/131937


    題名: 應用於水下休閒活動之即時物件偵測系統
    Real-time object detection with applications to underwater recreational activities
    作者: 鄭文嘉
    Cheng, Wen-Chia
    貢獻者: 廖文宏
    Liao, Wen-Hung
    鄭文嘉
    Cheng, Wen-Chia
    關鍵詞: 水下影像
    色彩修正
    物體偵測
    遷移學習
    深度學習
    Underwater image
    Color correction
    Object detection
    Transfer learning
    Deep learning
    日期: 2020
    上傳時間: 2020-09-02 13:15:19 (UTC+8)
    摘要: 本論文試圖在一般相機所拍攝之水下影像,利用顏色修正技術,讓目前已存在之影像資料集,經過訓練後,可被用來偵測水下影像。
    本研究基於深度學習概念,使用屬於生成對抗網路之pix2pix network,透過控制loss function/ iteration/ 資料分群等方式,分析及評估各種參數調校,將水下影像進行修正,成為如水面上拍攝之影像。此外,藉由遷移學習概念來訓練模組,分析各種物件之AP及整體mAP,達成水下即時偵測物件的需求。
    評估及測試不同模型與調整參數,得到最佳結果為:Fish AP為0.71、Jellyfish AP為0.72及Diver AP為0.39,而整體 mAP則為0.606,相同條件下與未經影像修正相比,mAP大幅提高了50.3%。期許此色彩修正及偵測系統,讓水下活動人員進行各項休閒之時,即時被面鏡所限制的有限視野,也能藉著水下相機的架設,迅速偵測出視野內外所需之物件位置及資訊,在有限時間內,增加水下活動的效益。
    This thesis attempts to employ color correction techniques to restore underwater images so that object detection models trained with existing image datasets can be used to cope with underwater images without extensive retraining.
    Based on the concept of deep learning, this study uses pix2pix network, a variant of generative adversarial network (GAN), to enhance the color of underwater images. We analyze and evaluate the efficacy of restoration by exploring different combinations of loss function/ iteration/ data grouping. The object detection model is trained using transfer learning technique, and average precision (AP) and overall mAP are analyzed to meet the requirements of underwater activities.
    Experimental results indicate that the AP for Fish is 0.71, the AP for jellyfish is 0.72, and the AP for diver is 0.39, with an overall mAP of 0.606, demonstrating a remarkable 50.3% improvement when color correction is applied. It is expected that users can quickly identify the position and information of objects of interest within the field of view limited by the mask through the system, thereby enhancing the experience of underwater activities.
    參考文獻: [1] 李明儒, et al. "休閒潛水者對潛水風險的認知與損害之研究." 運動與遊憩研究 1.3 (2007): 14-33.
    [2] 李凡, et al. "水下声传播的发展及其应用." 物理 43.10 (2014): 658-666.
    [3] Klemm et al., “Exploring Our Fluid Earth is based on the nationally recognized Fluid Earth/Living Ocean (FELO) aquatic science curriculum.” 1995.
    [4] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
    [5] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
    [6] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
    [7] Steiner, A. "Understanding the Basics of Underwater Lighting." Ocean News & Technology 19.4 (2013): 10-12.
    [8] Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.
    [9] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
    [10] Kuznetsova, Alina, et al. "The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale." (2020).
    [11] Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE international conference on computer vision. 2017.
    [12] Sato, Kazunori. "An inside look at google bigquery." White paper, URL: https://cloud. google. com/files/BigQueryTechnicalWP. pdf (2012).
    [13] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).
    [14] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
    [15] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.
    [16] Panaretos, Victor M., and Yoav Zemel. "Statistical aspects of Wasserstein distances." Annual review of statistics and its application 6 (2019): 405-431.
    [17] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017).
    [18] Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." Advances in neural information processing systems. 2017.
    [19] Wu, N., and V. Rathod. "Tensorflow detection model zoo." (2017).
    [20] Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
    [21] Pedersen, Malte, et al. "Detection of marine animals in a new underwater dataset with varying visibility." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.
    [22] Li, Xirong, et al. "COCO-CN for Cross-Lingual Image Tagging, Captioning, and Retrieval." IEEE Transactions on Multimedia 21.9 (2019): 2347-2360.
    [23] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
    [24] Teama, Tarek, et al. "Real Time Object Detection Based on Deep Neural Network." International Conference on Intelligent Robotics and Applications. Springer, Cham, 2019.T Lin, Aire, et al. "Focal loss for dense object detection." IEEE Trans. Pattern Anal. Mach. Intell. 42.2 (2020): 318-327.
    [25] Lin, Aire, et al. "Focal loss for dense object detection." IEEE Trans. Pattern Anal. Mach. Intell. 42.2 (2020): 318-327.
    [26] Akkaynak, Derya, and Tali Treibitz. "Sea-thru: A method for removing water from underwater images." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.
    [27] Kolsur, Anoop, Sandeep Awale, and Nagraj Ullagaddi. "POV: Persistence of Vision."
    [28] Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal processing letters 20.3 (2012): 209-212.
    [29] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    105971018
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105971018
    資料類型: thesis
    DOI: 10.6814/NCCU202001418
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101801.pdf10030KbAdobe PDF2297檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋