政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/131935
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113961/144987 (79%)
造访人次 : 51988503      在线人数 : 831
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/131935


    题名: 運用Soft Actor-Critic深度強化學習演算法優化投資配置組合
    A Deep Reinforcement Learning Algorithms of Soft Actor-Critic for Optimizing Stock Portfolio Allocation
    作者: 王衍晰
    Wang, Yen-Hsi
    贡献者: 胡毓忠
    Hu, Yuh-Jong
    王衍晰
    Wang, Yen-Hsi
    关键词: 深度強化學習
    SAC 演算法
    投資組合
    資產配置
    Deep Reinforcement Learning
    Soft Actor-Critic Algorithm
    Stock Portfolio
    Portfolio Allocation
    日期: 2020
    上传时间: 2020-09-02 13:14:56 (UTC+8)
    摘要: 透過人工智慧演算法進行自動化交易是當前股市投資管理研究的發展趨勢。本研究結合深度強化學習與金融科技,探討運用 Soft Actor-Critic(SAC)演算法於股市資產配置之效益,並驗證演算法是否能有效應用於金融交易市場及藉配置資產提高投資總體價值。本研究自 Datastream 數據資料庫選定我國股票市場中 5 支股票為實驗標的,利用演算法在 OpenAI Gym 環境中訓練、運算並驗證該演算法在股市資產投資分配上之成效。實驗結果顯示,該 演算法能根據歷史數據學習預測目標股票未來績效表現,發揮自動調控風險及配置資產權 重之能力,產生最佳投資組合模型。另外本實驗結果與泛化投資組合策略(Universal Portfolio)相比,展現更為優異而穩定之收益,亦初步驗證深度強化學習能有效應用於金融交易市場。
    The applications of artificial intelligence algorithms to automated trading have become one of the prominent domains of portfolio management studies. This study combines the key concepts of both deep reinforcement learning and financial technology, exploring the performance of applying soft actor-critic (SAC) algorithm for the optimal stock portfolio allocation.
    In this thesis, we select five stocks via Taiwan stock market from the Datastream database as our experimental target. Then, with the operation of Docker containerization technology, we apply the SAC algorithm to train, calculate and come up with the most optimal stock portfolio allocation. A comparative analysis of the deep reinforcement learning based portfolio optimization versus the more traditional “Universal Portfolio”, “Best so Far”, and “Buy and Hold” is conducted to verify the effectiveness and stability of the overall performance of our SAC model.
    The preliminary results show that through its off-policy updates with a stable stochastic actor- critic formulation, the SAC approach is capable of predicting future stock performance from the input training of historical data. Furthermore, with its automated learning process, the risk and asset allocation weight are under dynamic management, thus generating the optimal stock portfolio with a better and more stable performance, comparing with other traditional quantitative strategies.
    參考文獻: [1] T. M. Cover and E. Ordentlich, "Universal portfolios with side information," IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 348-363, 1996.
    [2] S. Zhang, S. Wang, and X. Deng, "Portfolio selection theory with different interest rates for borrowing and leading," Journal of Global Optimization, vol. 28, no. 1, pp. 67-95, 2004.
    [3] B. Li and S. C. Hoi, "Online portfolio selection: A survey," ACM Computing Surveys (CSUR), vol. 46, no. 3, pp. 1-36, 2014.
    [4] F. D. Freitas, A. F. De Souza, and A. R. de Almeida, "Prediction-based portfolio optimization model using neural networks," Neurocomputing, vol. 72, no. 10-12, pp. 2155-2170, 2009.
    [5] S. T. A. Niaki and S. Hoseinzade, "Forecasting S&P 500 index using artificial neural networks and design of experiments," Journal of Industrial Engineering International, vol. 9, no. 1, p. 1, 2013.
    [6] J. Heaton, N. Polson, and J. H. Witte, "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, vol. 33, no. 1, pp. 3-12, 2017.
    [7] Z. Jiang, D. Xu, and J. Liang, "A deep reinforcement learning framework for the financial portfolio management problem," arXiv preprint arXiv:1706.10059, 2017.
    [8] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor," arXiv preprint arXiv:1801.01290, 2018.
    [9] T. Haarnoja et al., "Soft actor-critic algorithms and applications," arXiv preprint arXiv:1812.05905, 2018.
    [10] H. Markowitz, "Portfolio Selection The Journal of Finance, Vol. 7, No. 1," ed: Mar, 1952.
    [11] A.-H. Chang and J.-D. Kung, "Applying Grey forecasting model on the investment performance of Markowitz efficiency frontier: A case of the Taiwan securities markets," in First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC`06), 2006, vol. 2, pp. 254-257: IEEE.
    [12] C.-F. Lee, A. C. Lee, and J. Lee, "Overview of Finance Theory and Quantitative Finance: Past, Present, and Future," 臺灣金融財務季刊, vol. 10, no. 4, pp. 1-85, 2009.
    [13] A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire, "Algorithms for portfolio management based on the newton method," in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 9-16.
    [14] Z. Jiang and J. Liang, "Cryptocurrency portfolio management with deep reinforcement learning," in 2017 Intelligent Systems Conference (IntelliSys), 2017, pp. 905-913: IEEE.
    [15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: A survey," Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.
    [16] G. Tesauro, "TD-Gammon, a self-teaching backgammon program, achieves master-level play," Neural computation, vol. 6, no. 2, pp. 215-219, 1994.
    [17] M. I. Shapiai, Z. Ibrahim, M. Khalid, L. W. Jau, and V. Pavlovich, "A non-linear function approximation from small samples based on Nadaraya-Watson kernel regression," in 2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks, 2010, pp. 28-32: IEEE.
    [18] T.-I. Tsai and D.-C. Li, "Approximate modeling for high order non-linear functions using small sample sets," Expert Systems with Applications, vol. 34, no. 1, pp. 564-569, 2008.
    [19] V. Mnih et al., "Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 2013.
    [20] T. P. Lillicrap et al., "Continuous control with deep reinforcement learning," arXiv preprint arXiv:1509.02971, 2015.
    [21] M. E. Mangram, "A simplified perspective of the Markowitz portfolio theory," Global journal of business research, vol. 7, no. 1, pp. 59-70, 2013.
    [22] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, "Deep direct reinforcement learning for financial signal representation and trading," IEEE transactions on neural networks and learning systems, vol. 28, no. 3, pp. 653-664, 2016.
    [23] P. Nechchi, "Reinforcement Learning for Automated Trading," Mathematical EngineeringPolitecnico di Milano: Milano, Italy, 2016.
    [24] X. Li, Y. Li, Y. Zhan, and X.-Y. Liu, "Optimistic bull or pessimistic bear: adaptive deep reinforcement learning for stock portfolio allocation," arXiv preprint arXiv:1907.01503, 2019.
    [25] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, "Learning to walk via deep reinforcement learning," arXiv preprint arXiv:1812.11103, 2018.
    [26] Free Stock Charts, Stock Quotes, and Trade Ideas ─ TradingView (https://www.tradingview.com)
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    104971008
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104971008
    数据类型: thesis
    DOI: 10.6814/NCCU202001560
    显示于类别:[資訊科學系碩士在職專班] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100801.pdf2826KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈