Reference: | Vaswani, A., et al., Attention is all you need, in Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, Curran Associates Inc.: Long Beach, California, USA. p. 6000–6010.
2. Soleymani, M., et al., A survey of multimodal sentiment analysis. Image and Vision Computing, 2017. 65: p. 3-14.
3. Lehrer, K. and A. Lehrer, The language of taste. Inquiry, 2016. 59(6): p. 752-765.
4. Trivedi, B.P., Gustatory system: The finer points of taste. 2012. 486(7403): p. S2-S3.
5. Chiras, D.D., Human Biology. 2013: Jones & Bartlett Learning.
6. Piggott, J., Alcoholic beverages: Sensory evaluation and consumer research. 2011. 1-491.
7. Ross, C.F., Sensory science at the human–machine interface. Trends in Food Science & Technology, 2009. 20(2): p. 63-72.
8. Ares, G., Methodological challenges in sensory characterization. Current Opinion in Food Science, 2015. 3: p. 1-5.
9. Krantz, J., Experiencing Sensation and Perception. 2012: Pearson Education, Limited.
10. Stets, J.E., Emotions and Sentiments, in Handbook of Social Psychology, J. Delamater, Editor. 2006, Springer US: Boston, MA. p. 309-335.
11. Hu, X., K. Choi, and J.S. Downie, A framework for evaluating multimodal music mood classification. Journal of the Association for Information Science and Technology, 2017. 68(2): p. 273-285.
12. Hu, X. and J. Downie, When Lyrics Outperform Audio for Music Mood Classification: A Feature Analysis. 2010. 619-624.
13. Baltrusaitis, T., C. Ahuja, and L.-P. Morency, Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. 41(2): p. 423-443.
14. Flanagin, A.J. and M.J. Metzger, Trusting expert- versus user-generated ratings online: The role of information volume, valence, and consumer characteristics. Computers in Human Behavior, 2013. 29(4): p. 1626-1634.
15. Parikh, A.A., et al., Comparative content analysis of professional, semi-professional, and user-generated restaurant reviews. 2016: p. 1-15.
16. Minim, V.P.R., et al., Optimized Descriptive Profile: A rapid methodology for sensory description. Food Quality and Preference, 2012. 24(1): p. 190-200.
17. Murray, J.M., C.M. Delahunty, and I.A. Baxter, Descriptive sensory analysis: past, present and future. Food Research International, 2001. 34(6): p. 461-471.
18. Valentin, D., et al., Quick and dirty but still pretty good: a review of new descriptive methods in food science. International Journal of Food Science and Technology, 2012. 47(8): p. 1563-1578.
19. Granitto, P.M., et al., Modern data mining tools in descriptive sensory analysis: A case study with a Random forest approach. Food Quality and Preference, 2007. 18(4): p. 681-689.
20. Tao, J. and T. Tan, Affective Computing: A Review. 2005, Springer Berlin Heidelberg. p. 981-995.
21. Cai, G. and B. Xia, Convolutional Neural Networks for Multimedia Sentiment Analysis. 2015, Springer International Publishing. p. 159-167.
22. Purwins, H., et al., Deep Learning for Audio Signal Processing. Vol. 13. 2019.
23. 楊子萲, 應用深度學習架構於社群網路資料分析:以Twitter圖文資料為例, in 資訊科學系. 2018, 國立政治大學. p. 73.
24. 沈昱成, 基於社群媒體情感分析歸納產品屬性優缺點, in 資訊工程學系. 2016, 國立成功大學: 台南市. p. 44.
25. Zhang, L., S. Wang, and B. Liu, Deep Learning for Sentiment Analysis : A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018.
26. 陳禔多, 基於歌詞文本分析技術探討音樂情緒辨識之方法研究 Exploring Music Emotion Recognition via Textual Analysis on Song Lyrics. 2017.
27. Ortigosa-Hernández, J., et al., Approaching Sentiment Analysis by using semi-supervised learning of multi-dimensional classifiers. Neurocomputing, 2012. 92: p. 98-115.
28. Levy, O. and Y. Goldberg, Neural word embedding as implicit matrix factorization, in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. 2014, MIT Press: Montreal, Canada. p. 2177–2185.
29. Firat, O., K. Cho, and Y. Bengio. Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism. in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016. San Diego, California: Association for Computational Linguistics.
30. 李孟. 淺談神經機器翻譯 & 用 Transformer 與 TensorFlow 2 英翻中. 2019 [cited 2020 June, 9]; Available from: https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.html.
31. Devlin, J., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019. Minneapolis, Minnesota: Association for Computational Linguistics.
32. 李孟. 進擊的 BERT:NLP 界的巨人之力與遷移學習. 2019 [cited 2020 June, 9]; Available from: https://leemeng.tw/attack_on_bert_transfer_learning_in_nlp.html.
33. Yang, Z., et al., XLNet: Generalized Autoregressive Pretraining for Language Understanding. 2019.
34. WenWei, K. 2019-NLP最強模型: XLNet. 2019 [cited 2020 June, 9]; Available from: https://medium.com/ai-academy-taiwan/2019-nlp%E6%9C%80%E5%BC%B7%E6%A8%A1%E5%9E%8B-xlnet-ac728b400de3.
35. Mehra, N.K. and S. Gupta. Survey on Multiclass Classification Methods. 2013.
36. Salman, R. and V. Kecman. Regression as classification. 2012. IEEE.
37. The Yelp Restaurant Review. [cited 2020 June, 9]; Available from: https://www.yelp.com/dataset/.
38. Distiller. [cited 2020 March, 30]; Available from: https://distiller.com/.
39. Yu, N. and S. Kubler. Semi-supervised Learning for Opinion Detection. 2010. IEEE.
40. Banned Word List. 2009 [cited 2020 July, 7]; Available from: http://www.bannedwordlist.com/.
41. Wine, W.F.a. Describing Food. [cited 2020 June, 9]; Available from: https://world-food-and-wine.com/describing-food.
42. Wishart, D., The flavour of whisky. 2009. 6(1): p. 20-26.
43. How to Write a Menu Describing Your Food. 2020 Feb, 11 2020 [cited 2020 July, 7]; Available from: https://www.webstaurantstore.com/article/53/how-to-write-a-menu.html.
44. Rajapakse, T. Simple Transformers — Multi-Class Text Classification with BERT, RoBERTa, XLNet, XLM, and DistilBERT. 2019 [cited 2020 June, 9]; Available from: https://medium.com/swlh/simple-transformers-multi-class-text-classification-with-bert-roberta-xlnet-xlm-and-8b585000ce3a.
45. Transformers. 2020 [cited 2020 June, 9]; Available from: https://huggingface.co/transformers/.
46. 3.3. Metrics and scoring: quantifying the quality of predictions. 2020 [cited 2020 2020, Aug 16]; Available from: https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision.
47. Afonja, T. Accuracy Paradox. 2017 Dec, 8 [cited 2020 July, 9]; Available from: https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b.
48. Gorodkin, J., Comparing two K-category assignments by a K-category correlation coefficient. Computational Biology and Chemistry, 2004. 28(5): p. 367-374.
49. Ares, G., et al., Evaluation of a rating-based variant of check-all-that-apply questions: Rate-all-that-apply (RATA). Food Quality and Preference, 2014. 36: p. 87-95.
50. Ares, G. and P. Varela, Trained vs. consumer panels for analytical testing: Fueling a long lasting debate in the field. Food Quality and Preference, 2017. 61: p. 79-86.
51. Meyners, M., S. Jaeger, and G. Ares, On the analysis of Rate-All-That-Apply (RATA) data. Food Quality and Preference, 2015. 49.
52. Cosine similarity. 2020 2020, Aug 10 [cited 2020 2020, Aug 14]; Available from: https://en.wikipedia.org/wiki/Cosine_similarity.
53. 6.8. Pairwise metrics, Affinities and Kernels. 2020 [cited 2020 2020, Aug 16]; Available from: https://scikit-learn.org/stable/modules/metrics.html#cosine-similarity.
54. pingouin.mwu. 2020 [cited 2020 July, 12]; Available from: https://pingouin-stats.org/generated/pingouin.mwu.html.
55. Mann–Whitney U test. 2020 [cited 2020 July, 8]; Available from: https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test.
56. scipy.stats.spearmanr. 2020 2020, July 23 [cited 2020 2020, Aug 15]; Available from: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html.
57. Spearman`s rank correlation coefficient. 2020 2020, July 10 [cited 2020 2020, Aug 15]; Available from: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient.
58. Rajapakse, T. Simple Transformers — Introducing The Easiest Way To Use BERT, RoBERTa, XLNet, and XLM. 2019 [cited 2020 June, 9]; Available from: https://towardsdatascience.com/simple-transformers-introducing-the-easiest-bert-roberta-xlnet-and-xlm-library-58bf8c59b2a3.
59. McNemar`s test. 2020 2020, June 12 [cited 2020 2020, Aug 14]; Available from: https://en.wikipedia.org/wiki/McNemar%27s_test.
60. Model: xlnet-base-cased. 2019 [cited 2020 2020, Aug 17]; Available from: https://huggingface.co/xlnet-base-cased. |