English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51613818      Online Users : 831
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131757


    Title: 應用光譜水體指數結合數學形態學於光學影像進行河道變遷偵測之研究
    The Study of River Change Detection Using Spectral Water Index and Mathematical Morphology Based on Optical Images
    Authors: 李鈺禪
    Lee, Yu-Chan
    Contributors: 甯方璽
    Ning, Fang-Shii
    李鈺禪
    Lee, Yu-Chan
    Keywords: 河道變遷偵測
    光學影像
    光譜水體指數
    數學形態學
    River Change Detection
    Optical Images
    Spectral Water Index
    Mathematical Morphology
    Date: 2020
    Issue Date: 2020-09-02 12:40:03 (UTC+8)
    Abstract: 臺灣本島為一南北狹長、東西窄的島嶼,造就河川有流路短促、坡陡流急的特性,夏季熱帶氣旋對流旺盛,豪雨沖蝕使得中下游河道易發生沖淤的現象;加上全球氣候極端化,河川洪枯流量越趨懸殊,河川深槽處於不穩定的狀態,使得河道變遷更加頻繁與複雜。對於河川規劃治理與災害防治,首要基礎工作則是河道變遷分析。
    欲瞭解河道變遷的情形,過去多以河道大斷面測量為之,近代則發展以遙感探測技術達成河道變遷偵測,如航空影像或衛星影像等,隨著新興技術的發展如無人機(Unmanned Aerial Vehicle, UAV)或光達(Light Detection And Ranging, LiDAR)亦可運用於河道變遷偵測。上述各項技術各有其限制,由於光學影像如Landsat和Sentinel具有免費下載、定期定點拍攝之優勢,故本研究選擇光學影像作為研究資料。
    本研究以臺灣本島北、中、南、東各區河川,分別為淡水河、北港溪、曾文溪、旗山溪與秀姑巒溪作為研究區域,計算光譜水體指數(Spectral Water Index)並加入數學形態學(Mathematical Morphology)的概念,藉其能快速並準確提取水體之特性,同時完整萃取河道的邊界,進一步分析河道的變化。研究成果顯示:Normalized Difference Water Index(NDWI)與Modified Normalized Difference Water Index(MNDWI)適用於旗山溪、秀姑巒溪與淡水河其河川特性為辮狀型態之河川,Automated Water Extraction Index(AWEI)則適用於北港溪與曾文溪其河川特性為蜿蜒型態之河川,由此可知根據不同河川型態特性,各種光譜水體指數的應用仍具有差異,因此本研究之貢獻主要為針對臺灣本島河川,歸納各種光譜水體指數於地表水體提取之適用性。
    The characteristics of rivers in Taiwan are the steep slope with high sediment concentration. The distribution of precipitation is non-uniform due to the geographic environment and extreme events. Moreover, with the condition of global climate change, the dynamics of channel meandering become complicate and frequent. For river governance and disaster prevention, the primary work is the analysis of river change.
    To achieve river change detection, field measurements and remote sensing technology are necessary. With the development of new technology such as UAV and LiDAR, they can also be used for river change detection. Because optical images have the advantages of revisit time and long-term data collection, this study takes optical images as dataset.
    In this study, the study area includes Tamsui River, Beigang River, Zengwen River, Qishan River and Xiuguluan River. This study combines spectral water index and mathematical morphology to capture water bodies based on multitemporal optical images. In addition, this study delineates the river channel to analyze the change of river. The results show that Normalized Difference Water Index(NDWI) and Modified Normalized Difference Water Index(MNDWI) are suitable for braided rivers such as Qishan River, Xiuguluan River and Tamsui River. Automated Water Extraction Index(AWEI) is ideal for meandering rivers such as Beigang River and Zengwen River. As a result, this study summarizes the applicability of each spectral water index for surface water extraction according to various river types in Taiwan.
    Reference: 一、中文參考文獻
    王永珍、梁昇,2003,「蜿蜒河道之水理與地形因子對河川影響之研
    究」,『水土保持學報』,35(3):291-308。
    王秀雯、王志添、陳錕山、林延郎,2007,「利用衛星雷達影像分析臺灣
    西部水線變遷」,『航測及遙測學刊』,12(2):107-119。
    王瑞源、徐逸祥、陳依婕、樊先達、黃昭雄、朱子豪,2011,「整合空間
    及遙測分析於非法廢棄物棄置場之判釋」,『航測及遙測學刊』,
    16(1):45- 61。
    尤姝媚,2009,「應用多時序遙測影像於海岸濕地監測與評估」,成功大
    學衛星資訊暨地球環境研究所學位論文:台南。
    尹孝元、梁隆鑫、陳錕山、黃珮琦,2010,「衛星影像於國土變異監測之
    應用」,『航測及遙測學刊』,15(1):65-78。
    孔繁恩、詹進發、邵怡誠、李茂園、葉堃生、陳連晃,2014,「物件式分
    類法於高解析度航照影像萃取崩塌地之研究」,『航測及遙測學
    刊』,18(4):267-281。
    付必濤,2009,「基於亞像元分解重構的MODIS水體提取模型及方法研
    究」,華中科技大學博士論文:武漢。
    朱芳儀、吳俊毅、安軒霈、林仕修、陳樹群,2018,「臺灣主要流域之河
    川型態及其野溪界點判定評估」,『中華水土保持學報』,49(3):
    178-186。
    江政矩,2019,「無人機航空攝影測量輔助土地複丈可行性之研究」,政
    治大學地政研究所學位論文:台北。
    吳士杰,2011,「集水區河道地形變遷與土石流規模關係之研究-以大溪
    流域上游之三個集水區為例」,中興大學水土保持學系所學位論文:
    台中。
    吳偉慶、殷守敬、朱利、馬萬棟,2015,「低空間分辨率遙感數據亞像元
    級水華面積提取方法」,『國土資源遙感』,27(3):47-51。
    李文萍、王旭紅、李天文、毛文婷、姚磊,2017,「黃河流域內陸地表水
    體提取方法研究」,『水土保持通報』,37(2):158-164。
    李霞、王飛、徐德斌、劉清旺,2008,「基於混合像元分解提取大豆種植
    面積的應用探討」,『農業工程學報』,24(1):213-217。
    李友群,2017,「基於最小能量函數於空間域進行估算位移場」,中興大
    學研究所機械工程學系所學位論文:台中。
    周達峰,2005,「眼睛檢測演算法的比較」,交通大學電機學院電子與光
    電學程學位論文:新竹。
    林世峻,2007,「以植生指標探討九份二山崩塌地植生變遷之研究」,中
    興大學水土保持學系所學位論文:台中。
    林政緯,2019,「利用雷達強度變遷偵測邊坡變動」,政治大學地政學系
    學位論文:台北。
    周湘儀,2014,「野溪河道土砂清疏適宜性分析」,中興大學水土保持學
    系學位論文,台中。
    邱彥瑋,2012,「混合式多光譜影像全色態銳化之方法探討」,臺灣大學
    土木工程學研究所學位論文:台北。
    柯如榕,2014,「多時期航空影像於河床變遷分析之應用研究」,中興大
    學土木工程學系研究所碩士論文:台中
    施上粟、陳章波、胡通哲、葉明峰,2006,「淡水河江子翠地區河防安全
    及河川生態棲地檢討規劃」,中央研究院生物多樣性研究中心技術報
    告。
    施介嵐,2003,「以光譜混合分析法進行台灣地區Master影像之研
    究」,交通大學土木工程學系學位論文:新竹。
    姜曉晨、鄭正棟、武國瑛、王東豪,2018,「Landsat 8 OLI 多光譜與
    全色影像融合算法的比較」,『信息技術與網路安全』,(8):8。
    連中豪,2013,「宜蘭清水溪流域河道變化及輸砂行為分析」,臺灣師範
    大學地球科學系學位論文:台北。
    梁平,2011,「多源遙測影像於海岸變遷之研究」,政治大學地政研究所
    學位論文:台北。
    梁繼友,2010,「旗山溪河道取水固床工鄰近河段之河床變動分析」,成
    功大學水利及海洋工程學系碩士在職專班學位論文:台南。
    陳翰霖,張瑞津,2007,「曾文溪流域豪大雨事件的流量及輸沙量」,
    『地理學報』,48:43-65。
    張學聖、廖晉賢,2015,「與水共生的空間規劃途徑-以曾文溪流域為
    例」,『建築與規劃學報』,16(2):183-200。
    張崴,2016,「UAV航拍技術應用於河道變遷土砂監測和山區地形製圖
    之可行性分析」,中興大學水土保持學系所學位論文:台中。
    張瑞津、石再添、陳翰霖,1997,「台灣西南部嘉南海岸平原河道變遷之
    研究」,『國立臺灣師範大學地理研究報告』,27:105-131。
    張家豪,2012,「旗山溪河道幾何及水理特性變遷之研究」,成功大學水
    利及海洋工程學系學位論文:台南。
    曾煥君、王志添、許明光、陳錕山,2003,「合成口徑雷達衛星影像應用
    於颱風時河道狀態之監測」,『航測及遙測學刊』,8(4):83-98.
    曾裕強、邱順興,2007,「基於空間渾沌模型之合成孔徑雷達影像變遷偵
    測應用於受災範圍估測」,『航測及遙測學刊』,12(4):283-
    290。
    黃煜婷,2013,「莫拉克風災河道淤塞及變遷-以荖濃溪流域為例」,臺
    灣師範大學地球科學系學位論文:台北。
    黃帥豪,2008,「運用影像處理於航照影像之自動河道變遷分析」,中原
    大學資訊工程研究所學位論文:桃園。
    經濟部水利署全球資訊網,2020,https://www.wra.gov.tw/,取用日
    期:2020年7月22日。
    經濟部水利署,2006,「河川治理及環境營造規畫參考手冊」。
    經濟部水利署,2013,「旗山溪水域生態、棲地變遷調查及分析成果報
    告」。
    經濟部水利署,2016,「秀姑巒溪水系治理規劃檢討報告」。
    經濟部水利署,2015,「曾文溪流域因應氣候變遷總合調適研究」。
    經濟部水利署,2013,「旗山溪水域、棲地變遷調查與分析報告」。
    經濟部水利署,2005,「秀姑巒溪河系情勢調查報告」。
    經濟部水利署,2005,「淡水河系河川情勢調查計畫總報告」。
    經濟部水利署,2006,「曾文溪河系河川情勢調查總報告」。
    廖泫銘、江正雄、范毅軍,2011,「臺灣航照影像數位典藏成果與應
    用」,『國土資訊系統通訊』,78:57-72。
    蔡宗翰,2014,「北港溪流域地質查核與詮釋」,『中華防災學刊』,
    6(2):283-290。
    鄧淑萍、蘇元風、羅漢強、陳永寬、鄭克聲,2010,「福衛二號影像之大
    氣輻射校正-輻射控制區的應用」,『農業工程學報』,56(3):
    63-73。
    鄧淑萍,2010,「假設檢定及衛星遙測影像應用於地表覆蓋變遷偵測之研
    究」,臺灣大學森林環境暨資源學研究所學位論文:台北。
    鄧國雄,1985,「淡水河系下游河道變遷研究」,台灣師範大學地理學系
    地理學研究所學位論文:台北。
    蔡光榮、陳穎慧、江介倫、陳怡睿、陳昆廷,2014,「極端氣候變遷下高
    屏溪流域水文與地文環境之變異性調查分析」,『中國鑛冶工程學會
    會刊』,58(1):45-61。
    鍾凱文、劉萬俠、黃建明,2006,「河道演變的遙感分析研究-以北江下
    游為例」,『國土資源遙感』,18(3):69-73。
    謝有忠,2016,「以多期數值地形資料評估山崩區及河道地形之變遷」,
    臺灣大學地質科學研究所學位論文:台北。
    蕭震洋、林伯勳、鄭錦桐、辜炳寰、徐偉城、冀樹勇,2009,「應用光達
    技術進行集水區土砂運移監測及攔阻率評估」,『中興工程』,
    (105):17-25。
    顏志憲、陳昆廷、李心平、劉政儒、吳宗諭、詹勳全,2015,「以無人載
    具航拍進行河道穩定性監測之可行性研究」,『水土保持學報』,
    47(3):1407-1417。
    蕭國鑫、劉進金、游明芳、陳大科、徐偉城、王晉倫,2015,「結合空載
    LiDAR與航測高程資料應用於地形變化偵測」,『航測及遙測學
    刊』,11(3):283-295。

    二、英文參考文獻
    Acharya, T. D., Subedi, A. and Lee, D. H., 2018. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors (Basel), 18(8):1-15.
    Acharya, T. D., Yang, I. T., Subedi, A. and Lee, D. H., 2016. Change Detection of Lakes in Pokhara, Nepal Using Landsat Data. Multidisciplinary Digital Publishing Institute Proceedings, 1(2):17-22.
    Addink, E., De Jong, S. and Pebesma, E., 2007. The Importance of Scale in Object-based Mapping of Vegetation Parameters with Hyperspectral Imagery. Photogrammetric Engineering & Remote Sensing, 73:905-912.
    Baker, C., Lawrence, R., Montagne, C. and Patten, D., 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2):465.
    Benz, U., Hofmann, P., Willhauck, G., Lingenfelder, I. and Heynen, M., 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote
    Sensing, 58:239-258.
    Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65:2-16.
    Bo, W., Jinmu, Z. and Yindi, Z., 2020. "Improved Narrow Water Extraction Using a Morphological Linear Enhancement Technique" in Inland Waters-Dynamics and Ecology, IntechOpen.
    Chavez, J. P., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24:459-479.
    Chen, G., Hay, G. J., Carvalho, L. M. T. and Wulder, M. A., 2012. Object-based change detection. International Journal of Remote Sensing, 33(14):4434-4457.
    Cheng, K.-S. and Lei, T. C., 2001. Reservoir trophic state evaluation using Landsat TM images. JAWRA Journal of the American Water Resources Association, 37:1321-1334.
    Chignell, S., Anderson, R., Evangelista, P., Laituri, M. and Merritt, D., 2015. Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sensing, 7:9822-9843.
    Congalton, R. G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1):35-46.
    Crist, E. P., 1985. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17(3):301-306.
    Daya Sagar, B. S., Gandhi, G. and Prakasa Rag, B. S., 1995. Applications of mathematical morphology in surface water body studies. International Journal of Remote Sensing, 16(8):1495-1502.
    Di, K., Wang, J., Ma, R. and Li, R., 2003. Automatic shoreline extraction from high resolution IKONOS satellite imagery.1-11.
    Du, Z., Linghu, B., Ling, F., Li, W., Tian, W., Wang, H., Gui, Y., Sun, B. and Zhang, X., 2012. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. Journal of Applied Remote Sensing, 6(1):01-16.
    Feyisa, G. L., Meilby, H., Fensholt, R. and Proud, S., 2014. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sensing of Environment, 140:23–35.
    Foody, G. M., 2009. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment, 113(8):1658-1663.
    Frazier, P. S. and Page, K. J., 2000. Water Body Detection and Delineation with Landsat TM Data. Photogrammetric Engineering and Remote Sensing, 66:1461-1467.
    Frohn, R., Hinkel, K. and Eisner, W., 2005. Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote Sensing of Environment, 97:116-126.
    Gao, H., Wang, L., Jing, L. and Xu, J., 2016. An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions. IOP Conference Series: Earth and Environmental Science, 34:1-7.
    Gianinetto, M., Villa, P. and Lechi, G., 2006. Postflood damage evaluation using Landsat TM and ETM+ data integrated with DEM. IEEE Transactions on Geoscience and Remote Sensing, 44(1):236-243.
    Gilmore, S., Nalband, A. and Dewan, A., 2015. Effectiveness of DOS (Dark-Object Subtraction) method and water index techniques to map wetlands in a rapidly urbanising megacity with Landsat 8 data. CEUR Workshop Proceedings, 1323:100-108.
    Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer, S. and Matgen, P., 2016. Probabilistic Flood Mapping Using Synthetic Aperture Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 54(12):6958-6969.
    Gonzalez, R. C., Woods, R. E. and Eddins, S. L., 2004. Digital image processing using MATLAB. Pearson Education India.
    Hay, G. and Castilla, G. 2006. "Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT)", Proc. 1st Int. Conf. OBIA
    Hu, Y. H., Lee, H. B. and Scarpace, F. L., 1999. Optimal linear spectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 37(1):639-644.
    Huguenin, R. L., Karaska, M. A., Van Blaricom, D. and Jensen, J. R., 1997. Subpixel classification of bald cypress and tupelo gum trees in Thematic Mapper imagery. Photogrammetric Engineering and Remote Sensing, 63(6):717-724.
    Jakubauskas, M. E., 1996. Thematic Mapper characterization of lodgepole pine seral stages in Yellowstone National Park, USA. Remote sensing of environment, 56(2):118-132.
    Jawak, S. D., Kulkarni, K. and Luis, A. J., 2015. A Review on Extraction of Lakes from Remotely Sensed Optical Satellite Data with a Special Focus on Cryospheric Lakes. Advances in Remote Sensing, 04(03):196-213.
    Jensen, J. R., 2005. Remote sensing and digital image processing. Introductory Digital Image Processing. A Remote Sensing Perspective:1-34.
    Jensen, J. R. and Jackson, M. W., 2006. Introductory digital remote sensing image processing. v. 3. modulo 1: The remote sensing process.
    Ji, L., Zhang, L. and Wylie, B., 2009. Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering & Remote Sensing, 75(11):1307-1317.
    Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J. and Xiao, T., 2014. An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sensing, 6(6):5067-5089.
    Klein, I., Dietz, A. J., Gessner, U., Galayeva, A., Myrzakhmetov, A. and Kuenzer, C., 2014. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 26:335-349.
    KuPidura, P., 2013. Distinction of lakes and rivers on satellite images using mathematical morphology. Biuletyn Wojskowej Akademii Technicznej, 62(3):57-69.
    Kwang, C., Jnr, E. M. O. and Amoah, A. S., 2018. Comparing of landsat 8 and sentinel 2A using water extraction indexes over Volta River. Journal of Geography and Geology, 10(1):1-7.
    Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A. and Lafaye, M., 2007. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1):66-74.
    Lunetta, R. S., Johnson, D. M., Lyon, J. G. and Crotwell, J., 2004. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sensing of Environment, 89(4):444-454.
    Ma, B., Wu, L., Zhang, X., Li, X., Liu, Y. and Wang, S., 2014. Locally adaptive unmixing method for lake-water area extraction based on MODIS 250 m bands. International journal of applied earth observation and geoinformation, 33:109-118.
    Matheron, G., 1974. Random sets and integral geometry [by] G. Matheron. New York:Wiley.
    McFeeters, S. K., 1996. The use of the Normalized Difference Water Index(NDWI) in the delineation of open water features. International journal of remote sensing, 17(7):1425-1432.
    McHugh, M. L., 2012. Interrater reliability: the kappa statistic. Biochemia medica: Biochemia medica, 22(3):276-282.
    McIver, D. K. and Friedl, M. A., 2002. Using prior probabilities in decision-tree classification of remotely sensed data. Remote sensing of Environment, 81(2-3):253-261.
    Mondejar, J. P. and Tongco, A. F., 2019. Near infrared band of Landsat 8 as water index: a case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustainable Environment Research, 29(1):1-16.
    Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P. and Curnow, S., 2016. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174:341-352.
    Olmanson, L. G., Bauer, M. E. and Brezonik, P. L., 2008. A 20-year Landsat water clarity census of Minnesota`s 10,000 lakes. Remote Sensing of Environment, 112(11):4086-4097.
    Ortiz, F., Torres, F., De Juan, E. and Cuenca, N., 2002. Colour mathematical morphology for neural image analysis. Real-Time Imaging, 8(6):455-465.
    Ouma, Y. O. and Tateishi, R., 2006. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing,
    27(15):3153-3181.
    Pu, R., Landry, S. and Yu, Q., 2011. Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery. International Journal of Remote Sensing, 32(12):3285-3308.
    Pultz, T. J., Crevier, Y., Brown, R. J. and Boisvert, J., 1997. Monitoring local environmental conditions with SIR-C/X-SAR. Remote sensing of environment, 59(2):248-255.
    Ramsey Iii, E., Rangoonwala, A. and Bannister, T., 2013. Coastal Flood Inundation Monitoring with Satellite C‐band and L‐band Synthetic Aperture Radar Data. JAWRA Journal of the American Water Resources Association, 49(6):1239-1260.
    Reis, S. and Yilmaz, H. M., 2008. Temporal monitoring of water level changes in Seyfe Lake using remote sensing. Hydrological Processes: An International Journal, 22(22):4448-4454.
    Rishikeshan, C. A. and Ramesh, H., 2018. An ANN supported mathematical morphology based algorithm for lakes extraction from satellite images. ISH Journal of Hydraulic Engineering, 24(2):222-229.
    Rishikeshan, C. A. and Ramesh, H., 2018. An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images. ISPRS journal of photogrammetry and remote sensing, 146:11-21.
    Rogers, A. S. and Kearney, M. S., 2004. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing, 25(12):2317-2335.
    Rokni, K., Ahmad, A., Selamat, A. and Hazini, S., 2014. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sensing, 6(5):4173-4189.
    Ryu, J.-H., Won, J.-S. and Min, K. D., 2002. Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea. Remote sensing of Environment, 83(3):442-456.
    Sanyal, J. and Lu, X. X., 2004. Application of remote sensing in flood management with special reference to monsoon Asia: a review. Natural Hazards, 33(2):283-301.
    Sathianarayanan, M., 2018. Assessment of Surface Water Dynamics Using Multiple Water Indices around Adama Woreda, Ethiopia. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-5:181-188.
    Serra, J., 1983. Image analysis and mathematical morphology. Academic Press,Inc.
    Sethre, P. R., Rundquist, B. C. and Todhunter, P. E., 2005. Remote Detection of Prairie Pothole Ponds in the Devils Lake Basin, North Dakota. GIScience & Remote Sensing, 42(4):277-296.
    Sezgin, M. and Sankur, B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13:146-168.
    Sghaier, M. O., Foucher, S. and Lepage, R., 2017. River Extraction From High-Resolution SAR Images Combining a Structural Feature Set and Mathematical Morphology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3):1025-1038.
    Shen, L. and Li, C. 2010. "Water body extraction from Landsat ETM+ imagery using adaboost algorithm", 2010 18th International Conference on Geoinformatics 18-20 June 2010.
    Sivanpillai, R. and Miller, S., 2010. Improvements in mapping water bodies using ASTER data. Ecological Informatics, 5:73-78.
    Solomon, C. and Breckon, T., 2011. Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons.
    Töyrä, J. and Pietroniro, A., 2005. Towards operational monitoring of a northern wetland using geomatics-based techniques. Remote Sensing of Environment, 97(2):174-191.
    Tulbure, M. G. and Broich, M., 2013. Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011. ISPRS Journal of Photogrammetry and Remote Sensing, 79:44-52.
    Tulbure, M. G., Broich, M., Stehman, S. V. and Kommareddy, A., 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178:142-157.
    Vermote, E., Justice, C., Claverie, M. and Franch, B., 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185:46-56.
    Verpoorter, C., Kutser, T. and Tranvik, L., 2012. Automated mapping of water bodies using Landsat multispectral data. Limnology and Oceanography: Methods, 10(12):1037-1050.
    Work, E. A. and Gilmer, D. S., 1976. Utilization of satellite data for inventorying prairie ponds and lakes. Photogrammetric Engineering and Remote Sensing, 42(5):685-694.
    Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14):3025-3033.
    Yang, C., Zhou, C. and Wan, Q. 1999. "Deciding the flood extent with Radarsat SAR data and Image Fusion", Proceedings of 20th Asian Conference of Remote Sensing
    Yang, S., Xue, S. and Liu, T., 2010. Method for automatically extracting fine water body by using TM image. Journal of Surveying and mapping, 39(6):611-617.
    Yang, X., Qin, Q., Grussenmeyer, P. and Koehl, M., 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219:259-270.
    Yang, X., Zhao, S., Qin, X., Zhao, N. and Liang, L., 2017. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sensing, 9(6):596-613.
    Zhai, K., Wu, X., Qin, Y. and Du, P., 2015. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-spatial Information Science, 18(1):32-42.
    Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z. and Qin, Y., 2017. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 9(4):256.
    Description: 碩士
    國立政治大學
    地政學系
    107257004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107257004
    Data Type: thesis
    DOI: 10.6814/NCCU202001172
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    700401.pdf7451KbAdobe PDF27View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback