Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/131731
|
Title: | 以資料治理與協力觀點探究資料公益專案-以D4SG資料英雄計畫為例 Data projects from the perspective of data governance and collaboration: The case of Data projects from the perspective of data governance and collaboration: The case of D4SG Fellowship Program |
Authors: | 游蕙瑜 Yu, Hui-Yu |
Contributors: | 蕭乃沂 Hsiao, Nai-yi 游蕙瑜 Yu, Hui-Yu |
Keywords: | 資料治理 協力 專案 D4SG資料英雄計畫 Data governance Collaboration Program D4SG Fellowship Program |
Date: | 2020 |
Issue Date: | 2020-09-02 12:34:48 (UTC+8) |
Abstract: | 在大數據蓬勃發展的時代,對於政府來說,運用資料可改善行政效率、提供民眾客製化服務甚至精進決策品質降低風險,當政府內部難以運用現有人力與技術,外部領域專家的參與提供另一公私協力的契機,例如D4SG資料英雄計畫以資料科學技術解決社會問題,惟專案歷程中政府機關可能會面對到資料治理相關問題,例如定義關鍵資料、資料詮釋、資料品質等困難。因此,本研究以深度訪談法作為主要研究途徑,藉由資料治理及公私協力雙重觀點,釐清政府機關在資料公益專案之參與動機,理解專案歷程中存在攸關資料治理困難及關鍵成功因素,並探討資料公益專案成果如何在專案結束後發揮其影響力。 研究發現公部門參與資料公益專案,除了現實面可運用外部專業補足人力及技術不足外,專案啟發關鍵變革者對政府資料應用之期待外,亦會受到其他成功案例影響,且專案公益性有助於機關營造正面形象。在資料公益專案中,政府必須設定議題需求、提供關鍵資料及領域知識,並爭取組織支持,惟專案歷程並非順遂,本研究綜整七大攸關資料治理之挑戰,惟「溝通耗時」及「機關欠缺資料科學技能與監督能力」最為棘手,畢竟面臨領域知識不對稱之矛盾。再者,本研究希冀界定資料公益專案之關鍵成功因素,發現互惠性有助於良好協力經驗的建立,並有助於未來資料成果持續在體制內發揮影響力。最後,雖資料公益專案結束,但成果如何在公部門深化及擴散值得探討,本研究發現可運用其他協作關係及經驗分享向外擴散,亦可作為未來政策精進參考及檢討現有作法。 最後,本研究針對公務機關及外部領域專家提出相關實務建議,前者強調資料公益專案後成果如何深化,必須取決於知識移轉程度並建立制度,後者則是提醒外部領域專家須持續與議題單位溝通釐清細節,以確保資料詮釋符合現實情境。另外,本研究建議未來研究可透過量化問卷評價資料治理困難程度及關鍵影響因素,藉由不同利害關係人及應用領域去豐富研究內容等。 The government uses big data to increase administrative efficiency, improve the quality of policy decision-making, and so on. Owing to the lack of data science manpower, the government practically delegates academic research institutes or information technology firms to implement data analysis. Public-private partnership (PPP) provides another approach to use data science to solve particular social problems, such as the D4SG followship program in Taiwan. The project comprises data scientists (fellows), mentors and project partner such as government agencies and non-profit oganizations. However, the project partners may face information governance related difficulties during the programs, for example, they realize it is hard to define the key demand, understand the data science technology, and how to interpretate the result of data analysis. The methodology is multiple case study of four D4SG programs that have proposed by the public sectors in 2018. The study aims to clarify the information governance challenges and key success factors in the programss of data for social good from the perpective of government officials. Additionally, the study would explore how to motivate the government to join and how to realize the project results in the government system when finished the projects. Results reveal that the projects inspire key changers` expectations for the application of government data and provides external approach of data science manpower to supply. The government must set their agenda issues, provide datas and domain knowledge, and strive for organizational supports. This study summarizes the seven major data governance challenges. For example, they take times to communicate between data scientists and social workers because of the asymmetry in domain knowledge. Furthermore, this study defines five key success factors in the projects. Reciprocity is the most important to establish good collaborative experience and influence governtment officials to take action for data-driven governance. After the programs, the government agencies join other data hackathons to deepen their findings, and share experience and the results of data analysis. Also, they refine the information related administrative practices and policy decisions. The study emphasizes the project results of data for social good should be realized in the government system. And, it depends on the degree of knowledge transfer from data scientists and domain experts to the government officials during the project. Addictionally, the study suggests the external experts should communicate with the project partners to clarify the details of key issues and data to ensure that the data interpretation is close to the real situation. Finally, this study suggests future studies that conduct quantitative questionnaires to evaluate data governance challenges and key success factors, and research the long-term effects of the projects of data for social good. |
Reference: | 余孝先、趙祖佑(2015)。巨量資料應用,打造資料驅動決策的智慧政府。國土與公共治理季刊,3(4),頁27-37 吳其勳(2013)。資料是新石油,但你要找得到油井。iThome電腦報,2013年9月13日,取自:https://www.ithome.com.tw/node/82607。 吳芝儀(2011)。以人為主體之社會科學研究倫理議題。人文社會科學研究,5(4),頁19-39。 吳英明(1993)。公私部門協力關係和「公民參與」之探討。中國行政評論,2(3),頁1-14。 宋餘俠、李國田(2012)。政府部門資料加值推動策略與挑戰。研考雙月刊,36(4),頁10-21。 李宗勳(2004),公私協力與委外化的效應與價值:一項進行中的治理改造工程。公共行政學報,12,頁41-77。 李政忠(2004)。網路調查所面臨的問題與解決建議,資訊社會研究,6,頁1-24。 阮光勛(2014)。促進質性研究的品質與可信性。國教新知,61(1),頁92-102。 林秀雲 譯(2013)。社會科學研究方法:第十三版(Eael Babbie原著)。台北:雙葉書廊。 林東清、劉勇志、楊怡娟、陳秀如(2006)。跨組織知識分享模式之研究─以資訊專案委外為例。資訊管理學報,13(2),頁55-87。 林俊宏 譯(2013)。大數據(Viktor Mayer-Schönberger & Kenneth Cukier原著)。台北:遠見天下文化。 林淑馨(2016)。台灣非營利組織與地方政府協力之實證研究。政治科學論叢,69,頁103-148。 紐文英(2013)。研究方法與論文寫作-量化與質性方法之應用,台北:三民。 莊文忠(2018)。循證的政策制訂與資料分析:挑戰與前瞻。文官制度季刊,10(2),頁1-20。 許志義、王筑莙、柳育林、許懷元(2018)。政府資料開放與資料管理。公共行政學報,56,頁131-162。 許耿銘(2009)。協力理論在跨界人力資源管理的應用:以「政府機關與績優民間機構人才交流實施辦法草案」為例。文官制度季刊,1(3),頁55-79。 陳向明(2010)。社會科學質的研究:第十四版。台北:五南。 陳昇瑋(2017)。讓資料為你產生價值。哈佛商業評論,2017年4月28日,取自:https://www.hbrtaiwan.com/article_content_AR0007025.html。 陳淑娟、游蕙瑜(2019)。運用大數據協助家暴風險預測-以臺北市家庭暴力案件資料為例。社區發展季刊,165,頁67-76。 陳敦源、蕭乃沂、廖洲棚(2015)。邁向循證政府決策的關鍵變革:公部門巨量資料分析的理論與實務。國土及公共治理季刊,3(3),頁33-44。 曾冠球(2010)。「問題廠商」還是「問題政府」?電子化政府公司合夥協力困境之個案分析。公共行政學報,34,頁77-121。 曾冠球(2017)。良善協力治理下的公共服務民間夥伴關係。國土及公共治理季刊,5(1),頁67-79。 曾龍(2016)。大數據與巨量資料分析,科學發展,524,頁66-71。 黃心怡、蘇彩足、蕭乃沂(2017)。再探開放政府資料的政策與發展。國土與公共治理季刊,4(4),頁18-28。 黃健翔、吳清山(2013)。提升教師專業學習社群之可行策略探究。教育研究學報,47(1),頁39-58。 楊東謀、吳怡融(2019)。台灣政府開放資料推行之近況調查與探討。教育資料與圖書館學,56(1),頁7-44。 劉宗熹(2016)。公務機關巨量資料分析應用推動簡介。政府資訊通報,341,頁1-9。 潘慧玲、張淑涵(2014)。策畫學校發展的資料運用:一所高中的個案研究。教育科學研究期刊,59,頁171-195。 蕭乃沂、朱斌妤(2018)。資料驅動創新的跨域公共治理。國土與公共治理季刊,6(4),頁74-85。 簡正鎰(2005)。進行質性訪談研究有關倫理議題之探討。輔導季刊,41(1),頁47-57。 Abelson, B., K. R. Varshney, & J. Sun (2014). Targeting direct cash transfers to the extremely poor. KDD2014, New York. Adams, W. A., & C. Sandbrook (2013). Conservation, evidence and policy, Oryx, 47(3), p329-335. Al-Ruithe, M., & E. Benkhelifa (2017). Analysis and classification of barriers and critical success factors for implementing a cloud data governance strategy. In Proceedings of the 8th International Conference on Emerging Ubiquitous System and Pervasive Networks. Sweden. Ansell, C., & A. Gash (2007). Collaborative Governance in Theory and Practice. Journal of Public Administration Research and Theory, 18, p543-571. Bizer, C., P. Boncz, M. L. Brodie, & O. Erling (2011). The meaningful use of big data: four perspectives -four challenges. ACM SIGMOD Record, 40(4), p56-60. Burkea, R., & I. Demirag. (2017). Risk transfer and stakeholder relationships in Public Private Partnerships. Accounting Forum, 41, p26-43. Chakkol, M., K. Salviaridis, & M. Finne (2018). The governance of collaboration in complex projects, International Journal of Operations & Production Management 38(4), p997-1019. Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, & R. Wirth (2000). CRISP-DM 1.0:Step-by-step data mining guide. SPSS. Retrieved from https://www.the-modeling-agency.com/crisp-dm.pdf. Davenport, T. H., & D. J. Patil (2012). Data scientist: the sexiest job of the 21st century. Harvard Business Review, Oct 2012. Retrieved from https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century . DeMarco, T., & T. Lister (2004). Waltzing With Bears: Managing Risk on Software Projects(與熊共舞:軟體專案管理的風險管理),臺北:經濟新潮社 Dwivedi, Y. K., M. Janssen, E. L. Slade, N. P. Rana, V. Werakkody, J. Millard, J. Hidder, & D. Snijders (2017). Driving innovation through big open linked data (BOLD): Exploring antecedents using interpretive structural modeling. Information Systems Frontiers, 19, p197-212. European Commission. (2014). Toward a thriving data-driven economy. Official Journal of the European Union, 242. Retrieved from https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/towards-thriving-data-driven-economy . Fayyed, U., G. Piatetsky-Shapiro, & P. Smyth (1996). From data mining to knowledge discovery in databased. AI magazine, 17(3), p37-54. Gamage, P. (2016). New development: Leveraging ‘big data’ analytics in the public sector. Public Money & Management, 36(5), p385-390. Gascó-Hernándeza, M., E. G. Martin, L. Reggib, S. Pyo, & L. F. Luna-Rey (2018). Promoting the use of open government data: Cases of training and engagement. Government Information Quarterly, 35, p233-242. Ghani, R., L. Green, A. Bengoa, & M. Shah (2019). Solve for good: A data science for social good marketplace. Association for Computing Machinery(ACM) SIGKDD Explorations Newsletter, 21(1), p3-5. Green, B. (2019). “Good” isn’t good enough. In Proceedings of the AI for Social Good workshop at NeurIPS. Vancouver, Canada. Höchtl, J., P. Parycek, & R. Schöcllhammer (2016). Big data in the policy: Policy decision making in the digital era. Journal of Organization Computing and Electronic Commerce, 26(1-2), p147-169. Hong, B., A. Malik, J. Lundquist, I. Bellach, & C. E. Kontokosta (2018). Applications of Machine Learning Methods to Predict Readmission and Length-of-Stay for Homeless Families: The Case of Win Shelters in New York City. Journal of Technology in Human Services, 36(1), p89-104. IBM (2014). Data-driven government: Challenges and a path forward. Retrieved from https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=GQW03008USEN. IBM (2016). Analytics Solutions Unified Method: Implementations with Agile principles. IBM Analytics. Retrieved from ftp://ftp.software.ibm.com/software/data/sw-library/services/ASUM.pdf . IBM (2018)。CRISP-DM概觀,IBM 知識中心,取自:https://www.ibm.com/support/knowledgecenter/zh-tw/SS3RA7_sub/modeler_crispdm_ddita/clementine/crisp_help/crisp_overview.html。 Janssen, M., & G. Kuk (2016). Big and open linked data (BOLD) in research, policy, and practice. Journal of Organizational Computing and Electronic Commerce, 26(1-2), p3-13. Janssen, M., & J. van den Hoven (2015). Big and open linked data (BOLD) in government: A challenge to transparency and privacy. Government Information Quarterly, 32, p363-368. Janssen, M., H. van der Voort, & A. Wahyyudi (2017). Factors influencing big data decision-making quality. Journals of Business Research, 70, p338-345. Khatri, V., & C. V. Brown (2010). Designing data governance. Communications of the ACM, 53(1), p148-152. Kim, G. H., S. Trimi, & J. H. Chung (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), p78-85. Kontokosta, C. E. (2017). Urban informatics for social good: Definitions, tensions, and challenges. In Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering. Pittsburgh. Kontokosta, C. E., B. Hong, A. Malik, & A. Somvanshi (2017). Predictors of Re-admission for Homeless Families in New York City: The Case of the Win Shelter Network. In the Bloomberg Data for Good Exchange Conference. Chicago. Koschinsky, J. (2015). Data science for good: What problems fit? In the Bloomberg Data for Good Exchange Conference. Retrieved from https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-631-data-storytelling-studio-climate-change-spring-2017/readings/MITCMS_631s17_koschinsky_2015.pdf Kum, H. C., C. J. Stewart, R. A. Rose, & D. F. Duncan (2015). Using big data for evidence based governance in child welfare. Children and Youth Services Review, 58, p 127-136. Matheus, R., M. Janssen, & D. Maheshwari (2018). Data science empowering the public: Data-driven dashboards for transparent and accountable decision making in smart cities. Government Information Quarterly. Retrieved from https://doi.org/10.1016/j.giq.2018.01.006. Niño, M., R. V. Zicari, T. Ivanov, K. Hee, N. Mushtaq, M. Rosselli, C. Sánchez-Ocaña, K. Tolle, J. M. Blanco, A. Illarramendi, J. Besier, & H. Underwood (2017). Data projects for “Social good”: Challenges and opportunities. International Scholarly and Scientific Research & Innovation 11(5), p 896-906. Olesk, A., E. Kaal, & K. Toom (2017). The possibilities of Open Science for knowledge transfer in the science-policy interfaces. Journal of Science Communication. 18, p 1-17. Panetta, K. (2018). Use data for social good. Gartner. 2018/8/9. Retrieved from https://www.gartner.com/smarterwithgartner/use-data-for-social-good/. Porway, J. (2015). Five principles for applying data science for social good. O’Reilly. Retrieved from https://www.oreilly.com/ideas/five-principles-for-applying-data-science-for-social-good. Provost, F., & T. Fawcett (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), p51-59. Richards, R. C., & R. Ritsert (2012). Data governance challenges facing controller. International Journal of Business, Accounting, and Finance, 6(1), p25-42. Sanderson, I. (2002). Making sense of `what works`: evidence based policy making as instrumental rationality? Public Policy and Administration, 17(3), p 61-75. Shan, S., A. Horne, & J. Capella (2012). Good data won’t guarantee good decisions. Harvard Business Review, April 2012. Retrieved from https://hbr.org/2012/04/good-data-wont-guarantee-good-decisions . Singh, V., I. Srivastava, & V. Johri (2014). Big data and the opportunities and challenges for government agencies. International Journal of Computer Science and Information Technologies, 5(4), p5841-5824. Thompson, N., R. Ravindran & S. Nicosia (2015). Government data does not mean data governance: lessons learned from a public sector application audit. Government Information Quarterly, 32(3), p316-322. Thomson, A. M., & J. L. Perry (2006). Collaboration processes: Inside the black box. Public Administration Review, 66.(1), p20-32. Thomson, A. M., J. L. Perry & T. K. Miller (2008). Linking collaboration processes and outcomes: Foundations for Advancing Empirical Theory. Vigoda, E. (2002). From responsiveness to collaboration: Governance, citizens, and the next generation of public administration. Public Administration Review, 62(5), p527-540. Weissert, C. S. (2001). Reluctant Partners: The Role of Preferences, Incentives, and Monitoring in Program Compliance. Journal of Public Administration Research and Theory 11(4), p435-453. Wirth, R. (2000). CRISP-DM: Towards a standard process model for data mining. In the Proceedings of the 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining, New York. Zegura, E., C. DiSalvo, & A. Meng (2018). Care and the practice of data science for social good. In the Proceedings of COMPASS `18, California. Zhao, Y., & B. Fan (2018). Exploring open government data capacity of government agency: Based onthe resource-based theory. Government Information Quarterly 35, p1–12. |
Description: | 碩士 國立政治大學 公共行政學系 105256019 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0105256019 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202001253 |
Appears in Collections: | [公共行政學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
601901.pdf | | 5666Kb | Adobe PDF2 | 332 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|