Reference: | [1] Hong, L., & Davison, B. D. (2010, July). Empirical study of topic modeling in twitter. In Proceedings of the first workshop on social media analytics (pp. 80-88). ACM. [2] Everett, B. (2013). An introduction to latent variable models. Springer Science & Business Media. [3] Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2013). Handbook of latent semantic analysis. Psychology Press. [4] Manning, C., Raghavan, P., & Schütze, H. (2010). Introduction to information retrieval. Natural Language Engineering, 16(1), 100-103. [5] Hofmann, T. (2000). Learning the similarity of documents: An information-geometric approach to document retrieval and categorization. In Advances in neural information processing systems (pp. 914-920). [6] David M. Blei, Andrew Y. Ng, Michael I. Jordan. 2003. Latent Dirichlet Allocation. University of California, United States. [7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado & J.Dean. 2013. Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems (pp.3111–3119) [8] PTT. (1995.9.14). Retrieved December 23, 2019, from https://www.ptt.cc/bbs/index.html [9] Jurafsky, D. (2000). Speech & language processing. Pearson Education India. [10] Nenkova, A., & McKeown, K. (2012). A survey of text summarization techniques. In Mining text data (pp. 43-76). Springer, Boston, MA. [11] Chaffar, S., & Inkpen, D. (2011, May). Using a heterogeneous dataset for emotion analysis in text. In Canadian conference on artificial intelligence (pp. 62-67). Springer, Berlin, Heidelberg. [12] 廖經庭. 2007. BBS 站的客家族群認同建構: 以 PTT 「Hakka Dream」版為例. 碩士論文. 國立中央大學, 桃園市, 台灣. [13] 蔣佳峰. 2017. PTT災害事件擷取系統. 碩士論文. 國立中央大學, 桃園市, 台灣. [14] 陳弘君. 2017. 社群媒體中鄉民對於政治議題之迴聲室效應:以PTT八卦版為例. 碩士論文. 私立元智大學, 桃園市, 台灣. [15] J. K. Pritchard, M. Stephens and P. Donnelly. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), (pp.945-959). University of Oxford, Oxford OX1 3TG, United Kingdom. [16] Katherine A. Heller, Zoubin Ghahramani. 2001. Bayesian Hierarchical Clustering. University College London 17 Queen Square, London, WC1N 3AR, UK [17] Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22. [18] Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta mathematica, 30, 175-193. [19] Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical statistics, 22(1), 79-86. [20] 沈裕傑. 2008. 以語句為主之LDA模型於文件摘要之應用Sentence-Based Latent Dirichlet Allocation for Text Summarization. 碩士論文. 國立成功大學, 台南市,台灣. [21] Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge University Press. [22] Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010, June). Automatic evaluation of topic coherence. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics (pp. 100-108). [23] Moody, C. E. (2016). Mixing dirichlet topic models and word embeddings to make lda2vec. arXiv preprint arXiv:1605.02019. [24] Wang, X., Wei, F., Liu, X., Zhou, M., & Zhang, M. (2011, October). Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In Proceedings of the 20th ACM international conference on Information and knowledge management (pp. 1031-1040). ACM. [25] Quercia, D., Askham, H., & Crowcroft, J. (2012, June). TweetLDA: supervised topic classification and link prediction in Twitter. In Proceedings of the 4th Annual ACM Web Science Conference (pp. 247-250). ACM. [26] Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009, August). Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1 (pp. 248-256). Association for Computational Linguistics. [27] Pavitt, C., & Johnson, K. K. (1999). An examination of the coherence of group discussions. Communication Research, 26(3), 303-321. [28] Li, W., Xu, J., He, Y., Yan, S., & Wu, Y. (2019). Coherent comment generation for chinese articles with a graph-to-sequence model. arXiv preprint arXiv:1906.01231. [29] Gensim. (n.d.). Retrieved December 23, 2019, from https://radimrehurek.com/gensim/models/word2vec.html [30] Crummy. (1996). Retrieved December 24, 2019, from https://www.crummy.com/software/BeautifulSoup/ [31] MongoDB. (2009). Retrieved December 31, 2019, from https://www.mongodb.com/ [32] Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of research and development, 2(2), 159-165. [33] Jieba. (n.d.). Retrieved December 31, 2019, from https://github.com/fxsjy/jieba [34] Wikipedia. (2001). Retrieved May 22, 2020, from https://dumps.wikimedia.org/zhwiki/20200501/ [35] Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4), 35-43. [36] Gibbs, N. E., Poole Jr, W. G., & Stockmeyer, P. K. (1975). A Comparison of Several Bandwidth and Profile Reduction Algorithms (No. TR-6). COLLEGE OF WILLIAM AND MARY WILLIAMSBURG VA. [37] Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. In Advances in neural information processing systems (pp. 288-296). [38] Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010, June). Automatic evaluation of topic coherence. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics (pp. 100-108). [39] Mimno, D., Wallach, H., Talley, E., Leenders, M., & McCallum, A. (2011, July). Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 262-272). [40] Sievert, C., & Shirley, K. (2014, June). LDAvis: A method for visualizing and interpreting topics. In Proceedings of the workshop on interactive language learning, visualization, and interfaces (pp. 63-70). |