English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52198872      Online Users : 888
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/131506
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131506


    Title: 長短期記憶神經網路(LSTM)利率之預測
    Using Long Short-Term Memory Networks Model Forecasting Interest Rates
    Authors: 蔡伶婕
    Tsai, Leng-Chieh
    Contributors: 林士貴
    岳夢蘭

    Lin, Shih-Kuei
    Yueh, Meng-Lan

    蔡伶婕
    Tsai, Leng-Chieh
    Keywords: 利率預測
    長短期記憶神經網路
    LIBOR
    複迴歸模型
    隨機森林
    定錨式移動視窗法
    逐步回歸
    低利率政策
    Interest Rate Prediction
    Long Short-Term Memory Networks Model
    LIBOR
    Multiple Regression Model
    Random Forest
    Anchored Moving Window
    Stepwise Regression
    Cut Rate
    Date: 2020
    Issue Date: 2020-09-02 11:49:22 (UTC+8)
    Abstract: 全球化浪潮與科技日新月異推使計算機的計算效率提升,外加人工智慧、機器學習與深度學習等演算法崛起,使我們可以運用更先進的方法來解決問題,輔助決策制定。
    本研究藉由利率、經濟數據、股市、匯率、金融情況等不同面向的數據,建立複迴歸模型(Multiple Regression Model)與長短期記憶神經網路模型(Long Short-Term Memory Networks Model),欲預測實施低利率政策下美元計價的3個月LIBOR未來走勢。經實證結果顯示:第一,長短期記憶神經網路模型預測能力較複迴歸模型的預測能力好;第二,採用定錨式移動視窗法(Anchored Moving Window)時,若每一次預測的天數越少,則模型確度越高;第三,經隨機森林(Random Forest)挑選變數後的模型準確度低於或略低於全部變數,由此可驗證長短期記憶神經網路模型中解釋變數越多越好;第四,學習率並不是越高越好,將取決於目標變數,因此不同模型、資料有其合適的學習率。
    本研究在實務層面上的貢獻不僅有利企業評價與投資報酬的決策,更能提升交易策略的勝率與金融衍生性商品的風險管理;在學術層面上的貢獻為本研究結合跨領域的知識,且目前極少論文探討神經網路運用於利率領域。因此,本研究欲探討長短期記憶神經網路預測利率的可行性與準確性。
    Owing to globalization and the rapid progression of technology, the computational efficiency of computers has increased. The rising of algorithms, including artificial intelligence, machine learning and deep learning, enable us to utilize advanced methods to tackle problems and assist in decision-making.
    In this study, I establish a multiple regression model and a long short-term memory neural network model to predict the future trend of 3-month LIBOR denominated in US dollars under a low interest rate policy by using data from different aspects, such as interest rates, economic data, stock market, exchange rates, financial situation, etc. The empirical results show that: first, the accuracy of the long short-term memory neural network model is better than that of the multiple regression model. Second, when the anchored moving window method is applied, the fewer days are predicted, the higher precision it will be. Third, compared to analyze with full variables, the accuracy is lower or slightly lower if the variables are selected by Random Forest. This result verifies that, in the long short-term memory neural network model, employing more explanatory variables is better. Last but not least, different models and materials have their own suitable learning rate.
    This study aims at exploring the feasibility and the accuracy of long short-term memory neural networks in forecasting interest rates. In the practical aspect, this research benefit enterprises and stakeholders not only to facilitate business valuation and decision-making by expected return, but also to improve the winning rate of trading strategies and the risk management of derivatives. On the other hand, in the academic aspect, this master thesis serves as a pioneer to apply machine learning in the interest rate field via integrating neural networks into the knowledge of finance. Therefore, the contribution of this master thesis is significant.
    Reference: Afonso, A., & Nunes, A. S. (2015). Economic forecasts and sovereign yields. Economic Modelling, 44, 319-326.

    Akram, T., & Li, H. (2017). What keeps long-term US interest rates so low?. Economic Modelling, 60, 380-390.

    Breuel, T. M. (2015). Benchmarking of LSTM networks. arXiv preprint arXiv:1508.02774.

    Dewachter, H., & Lyrio, M. (2006). Macro factors and the term structure of interest rates. Journal of Money, Credit and Banking, 119-140

    Duarte, J., Longstaff, F. A., & Yu, F. (2007). Risk and return in fixed-income arbitrage: Nickels in front of a steamroller?. The Review of Financial Studies, 20(3), 769-811.

    François, C. (2017). Deep learning with Python.

    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

    Kim, S. H., & Noh, H. J. (1997). Predictability of interest rates using data mining tools: a comparative analysis of Korea and the US. Expert Systems with Applications, 13(2), 85-95.

    Kobor, A., Shi, L., & Zelenko, I. (2005). What determines US swap spreads?. The World Bank.

    Lange, R. H. (2013). The Canadian macroeconomy and the yield curve: A dynamic latent factor approach. International Review of Economics & Finance, 27, 261-274.

    Lekkos, I., Milas, C., & Panagiotidis, T. (2005). On the predictability of common risk factors in the US and UK interest rate swap markets: Evidence from non-linear and linear models. Department of Economics, Keele University.

    Sarno, L., Thornton, D. L., & Valente, G. (2005). Federal funds rate prediction. Journal of Money, Credit and Banking, 449-471.

    Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Apress.

    Tan, X. (2019, October). LIBOR Prediction Using Genetic Algorithm and Genetic Algorithm Integrated with Recurrent Neural Network. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-8). IEEE.

    Vicente, J., & Tabak, B. M. (2008). Forecasting bond yields in the Brazilian fixed income market. International Journal of Forecasting, 24(3), 490-497.

    Liang (2016). Python程式設計入門指南. 碁峯

    Matthew Kirk (2017). 初探機器學習:使用Python. 歐萊禮

    江庭瑀 (2018). 倫敦銀行同業拆借利率的問題現況與改革方向. 經貿法訓第226期,12-17

    沈沛瑄、魏廉臻、張瑞益 (2019). 以LSTM-RNN預測ETF 50股價趨勢並結合交易策略以獲取最大獲利率.載於國立金門大學(主編). NCS 2019 全國計算機會議,36-41

    袁麗梅 (2018). 應用機器學習預測台灣十年期公債殖利率. 國立台灣科技大學碩士學位論文

    張力元 (2017). 深度學習應用於股價走勢之研究:以大陸市場為例.國立政治大學碩士論文

    陳瑋光、賴明勇、林忠晶 (2009). 國外同業拆借利率期限結構影響因素的實證分析——以美元LIBOR為例[J]. 經濟數學,2009,26(02):30-34.

    華小嶽 (2017) . 中國境內美元同業拆借市場發展研究. 上海交通大學碩士學位論文

    黃台心 (2009). 計量經濟學: Econometrics. 新陸書局

    葉怡成 (2003). 類神經網路模式應用與實作. 儒林圖書

    蔡立耑 (2018). 金融科技實戰:Python與量化投資. 博碩

    鄧文淵 (2019). Python機器學習與深度學習特訓班:看得懂也會做的AI人工智慧實戰 = Machine learning and deep learning with python. 碁峯

    簡劭騏 (2015). 主要國家央行採行負利率政策及啟示. 經濟研究第17期,273-306

    簡禎富、許嘉裕 (2019). 大數據分析與資料挖礦. 前程文化
    Description: 碩士
    國立政治大學
    金融學系
    107352007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352007
    Data Type: thesis
    DOI: 10.6814/NCCU202001468
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200701.pdf5647KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback