English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51197901      Online Users : 902
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/131471
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131471


    Title: 以虛擬多類別方式處理不平衡資料
    A Virtual Multi-label Approach to Imbalanced Data Classification
    Authors: 楊善評
    Yang, Shan-Ping
    Contributors: 周珮婷
    Chou, Pei-Ting
    楊善評
    Yang, Shan-Ping
    Keywords: 不平衡資料
    不平衡分類問題
    虛擬多類別
    Imbalanced data
    Imbalanced classification problem
    Virtual multi-label
    Equal Kmeans
    Date: 2020
    Issue Date: 2020-09-02 11:41:50 (UTC+8)
    Abstract: 大多數監督式學習方法對於不平衡資料的分類預測,在建構演算法的過程中,會以多數類別當作主要學習對象,因而犧牲少數類別,使分類器的性能下降。基於上述問題,本研究使用一個新的分類方法,結合Equal Kmeans的分群方式,以虛擬多類別來處理不平衡的問題,並且與常用的處理方式,包括抽樣方法中的過度抽樣、低額抽樣及SMOTE;分類器方法中的SVM及One-Class SVM進行比較。研究結果顯示本研究方法隨著資料不平衡程度的上升,會有越好的表現,且逐漸優於其他方法。
    To predict the classification of imbalanced data, most of the supervised learning methods will use the majority class as the main learning object to develop a learning algorithm. Therefore, it would lose the information on the minority class and reduce the performance of the classifier. Based on the problem above, a new classification approach with the Equal Kmeans clustering method is proposed in the study. The proposed virtual multi-label approach is used to solve the imbalanced problem. The proposed method is compared with the commonly used imbalance problem methods, such as sampling methods (oversampling, undersampling, and SMOTE) and classifier methods (SVM and One-Class SVM). The result shows that the proposed method will have better performance when the degree of data imbalance increases, and it will gradually outperform other methods.
    Reference: Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying support vector machines to imbalanced datasets. Paper presented at the European conference on machine learning.
    Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Paper presented at the Proceedings of the 23rd international conference on Machine learning.
    Ertekin, S., Huang, J., Bottou, L., & Giles, L. (2007). Learning on the border: active learning in imbalanced data classification. Paper presented at the Proceedings of the sixteenth ACM conference on Conference on information and knowledge management.
    Ertekin, S., Huang, J., & Giles, C. L. (2007). Active learning for class imbalance problem. Paper presented at the Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.
    Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Machine learning, 31(1), 1-38.
    Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
    Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Paper presented at the icml.
    Fushing, H., & Wang, X. (2020). Coarse- and fine-scale geometric information content of Multiclass Classification and implied Data-driven Intelligence. Proceedings, Machine Learning and Data Mining in Pattern Recognition, Petra Perner (Ed.), 16th International Conference on Machine Learning and Data Mining, MLDM 2020.
    Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Paper presented at the International conference on intelligent computing.
    Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine learning, 45(2), 171-186.
    He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. Paper presented at the 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence).
    He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284.
    Hong, X., Chen, S., & Harris, C. J. (2007). A kernel-based two-class classifier for imbalanced data sets. IEEE Transactions on neural networks, 18(1), 28-41.
    Japkowicz, N. (2001). Supervised versus unsupervised binary-learning by feedforward neural networks. Machine learning, 42(1-2), 97-122.
    Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent data analysis, 6(5), 429-449.
    Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM Sigkdd Explorations Newsletter, 6(1), 40-49.
    Kang, P., & Cho, S. (2006). EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems. Paper presented at the International Conference on Neural Information Processing.
    Kukar, M., & Kononenko, I. (1998). Cost-sensitive learning with neural networks. Paper presented at the ECAI.
    Lee, H.-j., & Cho, S. (2006). The novelty detection approach for different degrees of class imbalance. Paper presented at the International conference on neural information processing.
    Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550.
    Liu, Y., An, A., & Huang, X. (2006). Boosting prediction accuracy on imbalanced datasets with SVM ensembles. Paper presented at the Pacific-Asia Conference on Knowledge Discovery and Data Mining.
    Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. Paper presented at the ICML-2003 workshop on learning from imbalanced data sets II.
    Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions: a case study involving information extraction. Paper presented at the Proceedings of workshop on learning from imbalanced datasets.
    Ramey, J. (2016). Datamicroarray: collection of data sets for classification. In: URL https://github. com/boost-R/datamicroarray.
    Raskutti, B., & Kowalczyk, A. (2004). Extreme re-balancing for SVMs: a case study. ACM Sigkdd Explorations Newsletter, 6(1), 60-69.
    Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural computation, 13(7), 1443-1471.
    Sun, Y., Kamel, M. S., & Wang, Y. (2006). Boosting for learning multiple classes with imbalanced class distribution. Paper presented at the Sixth International Conference on Data Mining (ICDM`06).
    Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358-3378.
    Tang, Y., & Zhang, Y.-Q. (2006). Granular SVM with repetitive undersampling for highly imbalanced protein homology prediction. Paper presented at the 2006 IEEE International Conference on Granular Computing.
    Wang, B. X., & Japkowicz, N. (2008). Boosting support vector machines for imbalanced data sets. Paper presented at the International Symposium on Methodologies for Intelligent Systems.
    Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5), 654-657.
    Description: 碩士
    國立政治大學
    統計學系
    107354002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107354002
    Data Type: thesis
    DOI: 10.6814/NCCU202001477
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400201.pdf2104KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback