政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/131113
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51219791      Online Users : 903
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131113


    Title: 5G非獨立網路下的換手機制研究
    A study on handover mechanism in 5G Non-standalone network
    Authors: 張凱勝
    Chang, Kai-Sheng
    Contributors: 張宏慶
    Hung-Chin Jang
    張凱勝
    Chang, Kai-Sheng
    Keywords: 5G
    LTE
    換手
    異質網路
    Non-standalone(NSA)
    5G
    LTE
    handover
    heterogeneous network
    Non-standalone (NSA)
    Date: 2019
    Issue Date: 2020-08-03 17:58:49 (UTC+8)
    Abstract: 近年各個產業數位化,迎面而來的是龐大的網路需求,僅靠現有LTE系統是無法提供如此高的網路流量,因此,未來網路環境勢必整合其他異質網路,來提供更高的行動頻寬。有著成本低、佈署快速特性的小型基地台在此扮演極為重要的角色,佈署的數量是以倍數成長。這意味著未來異質網路的基地台密度會提高,換手的次數會隨著基地台的部署變得更加頻繁,產生嚴重的乒乓效應而降低系統效能,僅靠以往依據接收信號強度(Received Signal Strength)作為判斷換手的條件,已不能保持連線服務的品質。因此本研究基於異質網路的架構提出一套新的換手演算法,包含Measuring module、Scoring module、Forwarding module和Ping-pong module四個模組。目的是在高密度的基地台環境下減少乒乓效應的發生,考慮基地台頻寬、訊號強度、UE的移動方向以及基地台的位置,分別對每個候選基地台評分以及篩選,以確保在符合使用者QoS需求的前提下進行換手,提高使用者UE的throughput。
    自從2019年6月第三代合作夥伴計劃(3GPP)發布Release15後,正式開啟5G的行動世代。5G是目前各界關注的一項新網路系統,其技術對於各個產業無非都是一大推手。然而5G的建置成本很高,短期內無法全部換成5G設備,因此預期5G是漸進式的布建,與4G會有一段並存期。3GPP將5G發展分成早期版本的非獨立組網(Non-standalone)與後期版本的獨立組網(Standalone),共提出7種5G的候選網路架構,其中以非獨立組網的選項3是各界公認最早期的5G發展版本,因此本論文基於此架構做模擬。經由模擬實驗結果顯示,本研究提出的HO5G-C演算法相較於LTE標準換手演算法,在高密度的基地台環境下可改善33.9%的換手次數,增加9.3%的傳輸吞吐量。
    In recent years, the digitization of various industries has brought about substantial network demands. The existing LTE system cannot provide such high network traffic. Therefore, the future network environment must integrate other heterogeneous networks to provide higher mobile bandwidth.

    Small cells with low cost and rapid deployment characteristics play a significant role in the future. The number of deployments will grow in multiples. This means that the density of base stations in the future network will increase and the number of handovers will become more frequent. It will bring serious ping-pong effects and reduce system performance. The traditional handover conditions based on received signal strength can no longer meet the quality requirement of connected services. This study proposes a new handover algorithm based on the architecture of heterogeneous networks, including four modules: measuring module, scoring module, forwarding module, and ping-pong module. The purpose is to reduce ping-pong effects in a high-density of base stations environment. We consider the bandwidth of the base stations, the signal strength, the direction of the UE`s movement, and the location of the base stations. Each candidate base station is scored by the modules, and we choose the one with the highest score to ensure that it meets the user`s QoS requirements.

    Since the release of Release15 proposed by the 3GPP in June 2019, 5G has officially launched the new mobile generation. 5G is a new network system that everyone is looking forward to, and its technology is a big push for all industries. However, the construction cost of 5G is huge, and it is impossible to replace all 5G equipment in short term. Therefore, 5G is expected to be deployed gradually, and there will be a period of coexistence with 4G. 3GPP planned to divide 5G development into early version of Non-standalone and later versions of Standalone. There are seven kinds of 5G candidate network architectures, among these option 3 of Non-standalone is considered the earliest version of 5G development. The simulation of this study is based on this architecture. Finally, simulation experiments showed that the HO5G-C algorithm proposed in this study reduces the number of handover by 33.9% and enhances the system throughput by 9.3% in a high-density base station environment compared to the LTE standard handover algorithm.
    Reference: [1] 郭昱賢,林盈達, “LTE 架構、協定與效能,” 30 Sep 2011.
    [2] Gi Seok Park, Hwangjun Song, "Cooperative Base Station Caching and X2 Link Traffic Offloading System for Video Streaming Over SDN-Enabled 5G Networks, " IEEE Transactions on Mobile Computing, September 2018.
    [3] G K Venkatesh, Dr.P.V.Rao, "Optimizing Handover in LTE using SON System by Handling Mobility Robustness," IEEE International Conference On Recent Trends In Electronics Information & Communication Technology, May 2017.
    [4] Admin, “Techplayon,” [Online]. Available: http://www.techplayon.com/lte-handover-latency-calculation-access-node/. [Accessed July 2020].
    [5] Sulastri Manap, Kaharudin Dimyati, Mhd Nour Hindia, "Survey of Radio Resource Management in 5G Heterogeneous Networks, " IEEE, June 2020.
    [6] A. Szal, "ECN," [Online]. Available: https://www.ecnmag.com/news/2018/02/small-cell-forum-5g-cells-overtake-4g-2024. [Accessed July 2020].
    [7] Abdulraqeb Alhammadi, Mardeni Roslee, Mohamad Yusoff Alias, Ibraheem Shayea, "Auto Tuning Self-Optimization Algorithm for Mobility Management in LTE-A and 5G HetNets, " IEEE, December 2019.
    [8] Rami Ahmad, Mahamod Ismailb , Elan A Sundararajana, Nor E Othmana and Abdullah M. Zaina, "Performance of Movement Direction Distance- Based Vertical Handover Algorithm Under Various Femtocell Distributions in HetNet, " IEEE 13th Malaysia International Conference on Communications (MICC), Nov 2017.
    [9] Jacky Rizkallah, Nadine Akkari, "SDN-Based Vertical Handover Decision Scheme for 5G Networks," IEEE Middle East and North Africa Communications Conference, 2018.
    [10] Md Mehedi Hasan,Sungoh Kwon, "Frequent-Handover Mitigation in Ultra-Dense Heterogeneous Networks," IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, 1 JANUARY 2019.
    [11] C.-S. Kang, "台灣博碩士論文知識加值系統," [Online]. Available: https://hdl.handle.net/11296/6h58f3. [Accessed 15 July 2015].
    [12]
    I. Kustiawan, "台灣碩博士論文知識加值系統," [Online]. Available: https://hdl.handle.net/11296/jmk3a4. [Accessed Jan 2017].
    [13] Baoling Zhang, Weijie Qi, Jie Zhang, "An energy efficiency and ping-pong handover ratio optimization in two-tier heterogeneous networks, " IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018.
    [14] ITU, "Key features and requirements of 5G/IMT-2020 networks," [Online]. Available: https://www.itu.int/en/ITU-D/Regional-Presence/ArabStates/Documents/events/2018/RDF/Workshop%20Presentations/Session1/5G-%20IMT2020-presentation-Marco-Carugi-final-reduced.pdf. [Accessed July 2020].
    [15] Michele Polese, Marco Giordani, Tommaso Zugno, "Integrated Access and Backhaul in 5G mmWave Networks: Potential and Challenges, " IEEE Communications Magazine, March 2020.
    [16] "Vienna simulators LTE-A Simulators," 2018. [Online]. Available: https://www.nt.tuwien.ac.at/.
    [17] "LTE-sim," [Online]. Available: https://telematics.poliba.it/. [Accessed July 2020].
    [18] 3GPP, "TR 38.802 NR-MIMO," [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3066. [Accessed July 2020].
    [19] "Discrete-event network simulator for Internet systems—Version ns-3.24.1,," [Online]. Available: https://www.nsnam.org. [Accessed July 2020].
    [20] Marco Giordani, Michele Polese, Arnab Roy, Douglas Castor, and Michele Zorzi, “Standalone and Non-Standalone Beam Management for 3GPP NR at mmWaves,” IEEE, April 2019.
    [21] "3GPP Release 15, " [Online]. Available: https://www.3gpp.org/news-events/1929-nsa_nr_5g. [Accessed July 2020].
    Description: 碩士
    國立政治大學
    資訊科學系
    105753016
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105753016
    Data Type: thesis
    DOI: 10.6814/NCCU202001122
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    301601.pdf4803KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback