English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51581076      Online Users : 897
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/131108
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131108


    Title: 一個卡特蘭等式的組合證明
    A Combinatorial Proof of Catalan Identity
    Authors: 蔡佳平
    Tsai, Cia-Pin
    Contributors: 李陽明
    Chen, Young-Ming
    蔡佳平
    Tsai, Cia-Pin
    Keywords: 卡特蘭數
    一路領先
    標準楊氏圖表
    勾長公式
    Catalan identity
    Leading all the way
    Standard Ferrers diagrams
    Hook formula
    Date: 2020
    Issue Date: 2020-08-03 17:57:51 (UTC+8)
    Abstract: 本文所探討的是卡特蘭等式以及開票一路領先的問題,並將其結果推廣到高維度的卡特蘭數。假設有甲、乙兩位候選人,其得票數分別為m及n票,且m≧n,我們若將開票過程建立在直角座標上,起點由(0,0)開始,將甲得一票記作向量(1,0),乙得一票記作向量(0,1),則由甲候選人一路領先的開票方法數,即為直線y = x以下的路徑總數。
      在本文中,我們利用一種對射函數,將好路徑對應到標準楊氏圖表上的數字填法,再利用勾長公式算出方法數,藉此來得到好路徑的總數,作為卡特蘭等式的一種組合證明。文末也此方法推廣應用到多位候選人的開票一路領先方式,並得到高維度的卡特蘭等式:
    C_(m,n)=((mn¦(n,n,n,..,n)))/(∏_(k=1)^(m-1)▒((n+k)¦k) )
    In this thesis, we study the Catalan identity and generalize the results to obtain the higher dimensional Catalan identity. Suppose that there are two candidates A and B for an election. A receives m votes and B receives n votes with m≧n. If we consider the ballot as a lattice path on coordinate system, starting from (0,0), where every vote for A is expressed as a vector (1,0) and votes for B are expressed as vectors (0,1). Then the number of ways that A leads all the way equals to the number of paths under the diagonal y=x.
      In this paper, we establish a bijection function that corresponds the good paths to the Young tableaux, and calculate the number of Young tableaux by hook formula. Finally, we generalize this method to calculate the higher dimensional Catalan identity:
    C_(m,n)=((mn¦(n,n,n,..,n)))/(∏_(k=1)^(m-1)▒((n+k)¦k) )
    Reference: [1] Griffiths, M., & Lord, N. (2011). The hook-length formula and generalised Catalan numbers. The Mathematical Gazette, 95(532), 23-30.
    [2] Krattenthaler, C. (1995). Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted. The Electronic Journal of Combinatorics, 2(1), R13.
    [3] 楊蘭芬,一個有關開票的問題,政治大學應用數學系數學教學碩士在職專班碩士論文(2009),台北市。
    [4] 韓淑惠,開票一路領先的對射證明,政治大學應用數學系數學教學碩士在職專班碩士論文(2011),台北市。
    Description: 碩士
    國立政治大學
    應用數學系
    106751007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106751007
    Data Type: thesis
    DOI: 10.6814/NCCU202000716
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100701.pdf1352KbAdobe PDF2338View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback