English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113980/145005 (79%)
Visitors : 52028632      Online Users : 515
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/131106
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131106


    Title: 含外生多變數之時間數列門檻模式模型分析與預測
    Constructing Threshold Model with Exogenous Variables and its Forecasting
    Authors: 王治鈞
    Wang, Jhih Jyun
    Contributors: 吳柏林
    Wu, Berlin
    王治鈞
    Wang, Jhih Jyun
    Keywords: 外生多變數
    時間數列
    門檻模式
    預測
    Exogenous variables
    Time series
    Threshold model
    Forecasting
    Date: 2019
    Issue Date: 2020-08-03 17:57:26 (UTC+8)
    Abstract: 研究目的: 探討含外生變數之時間數列門檻模式及其應用。 研究方法: 利用隱性變數找出模型之門檻值,並考慮系統內能變化修正預測。 研究發現: 含外生多變數之模糊時間數列門檻模式模型分析與預測。 研究創新: 提出以含外生多變數之門檻模式架構方法。 研究價值: 提出用模糊熵來做預測修正,增加預測之準確度。 研究結論: 本研究建構之模式,均優於傳統的模式分析與預測。
    Research Objectives: Exploring the threshold model with exogenous variables and its application. Research Methods: Use implicit variables to find the threshold of the model, and consider the system internal energy change correction prediction. Research Findings: Analysis and Forecasting of threshold model of fuzzy time series with multivariate. Research Innovations: Proposing a threshold architecture method with multivariate. Research Value: Propose to use entropy to make prediction corrections and increase the accuracy of predictions.
    Reference: [1]. 吳柏林(1995) 時間數列分析導論。台北:華泰書局。
    [2]. 吳柏林 (2005) 模糊統計導論, 方法與應用. 台北:五南書局
    [3]. 楊奕農(2009) 時間序列分析:經濟與財務上之應用。台北,雙葉書廊。
    [4]. Kumar K and Wu B (2001). Detection of change points in time series analysis with fuzzy statistics, International Journal of Systems Science, Vol.32, No.9, pp1185-1192.
    [5]. Hansen, Bruce E. (1999). Testing for Linearity, Journal of Economic Surveys, Vol.13, No.5, pp551-576.
    [6]. Tong H. and Lim K. S. (1980), Threshold Autoregressive, Limit Cycles and Cyclical Data (with Discussion), Journal of the Royal Statistical Society. Series B, Vol.42, No.3, pp245-292.
    [7]. Subba Rao T. and Gabr M. (1980). A test for linearity of stationary time series analysis, Journal of Time Series Analysis , Vol.1, No.1, pp145-158.
    [8]. Haggan V. and Ozaki T. (1980). Amplitude-dependent Exponential AR Model Fitting for Non-linear Random Vibrations, in Time Series, (O. D. Anderson ed.), North-Holland, Amsterdam.
    [9]. Bai Jushan and Pierre Perron (2003). Computation and Analysis of Multiple Structural-Change Models, Journal of Applied Econometrics, Vol.18, No.1, pp1–22.
    [10]. Zhou H. D. (2005). Nonlinearity or structural break? - data mining in evolving financial data sets from a Bayesian model combination perspective, Proceedings of the 38th Hawaii International Conference on System Sciences
    [11]. Tsay Ruey S. (1989). Testing and Modeling Threshold Autoregressive Processes, Journal of the American Statistical Association, Vol.84, No.405, pp231-240.
    [12]. Hansen, Bruce E. (1999). Testing for Linearity, Journal of Economic Surveys, Vol.13, No.5, pp551-576..
    [13]. Chia-Lin Chang (2009). A Panel Threshold Model of Tourism Specialization and Economic Development, International Journal of Intelligent Technologies and Applied Statistics, pp. 159-186
    [14]. Qunyong Wang (2015). Fixed-effect panel threshold model using Stata, The Stata Journal (2015) 15, Number 1, pp. 121-134
    [15]. Henk A Tennekes (2016). A Critical Appraisal of the Threshold of Toxicity Model for NonCarcinogens, Journal of r uoJ Environmental & Analytical Toxicology
    [16]. Arastoo Bozorgi (2016). A community-based algorithm for influence maximization problem under the linear threshold model, Information Processing & Management Vol.52, Issue 6, November 2016, pp1188-1199
    [17]. Klaus K.Holst (2016). The liability threshold model for censored twin data, Computational Statistics & Data Analysis, Vol.93, January 2016, pp324-335
    Description: 碩士
    國立政治大學
    應用數學系
    105751010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105751010
    Data Type: thesis
    DOI: 10.6814/NCCU202000969
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101001.pdf1066KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback