Reference: | [1] Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum Convolutional Neural Networks. Nature Physics, 15, 1273-1278. [2] Eckman, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4 (91), 973-977. [3] Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., & Vincent, P. (2010). Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research, 11, 625-660. [4] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Learning for Finance: Deep Portfolios. Applied Stochastic Models in Business and Industry, 33, 3-12. [5] Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep Portfolio Theory. arXiv:1605.07230. [6] Kavukcuoglu, K., Sermanet, P., Boureau, Y. L., Gregor, K., Mathieu, M., & LeCun, Y. (2010). Learning Convolutional Feature Hierarchies for Visual Recognition. Neural Information Processing Systems, 1, 1090-1098. [7] Kaye, P., Laflamme, R., & Mosca, M. (2019). An Introduction to Quantum Computing. Oxford University Press. [8] Kerenidis, I., & Prakash, A. (2016). Quantum Recommendation Systems. Innovations in Theoretical Computer Science Conference, 49, 1-21. [9] Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2018). Q-means: A Quantum Algorithm for Unsupervised Machine Learning. Neural Information Processing Systems. [10] Kerenidis, I., Landman, J., & Prakash, A. (2020). Quantum Algorithms for Deep Con- volutional Neural Network. International Conference on Learning Representations. [11] Kitaev, A. Y., Shen, A. H., & Vyalyi, M. N. (1999). Classical and Quantum Computa- tion. American Mathematical Society. [12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the Association for Computing Machinery, 60(6), 84-90. [13] Lai, C. (2018). Analysis of the predictive ability of time series using convolutional neural network. National Cheng-Chi University. [14] Le, Q. V., Ngiam, J., Chen, Z., Chia, D., Koh, P. W., & Ng, A. Y. (2010). Tiled Convolutional Neural Networks. Neural Information Processing Systems, 1, 1279-1287. [15] LeCun, Y., & Bengio, Y. (1995). Convolutional Networks for Images, Speech, and Time Series. The Handbook of Brain Theory and Neural Networks, 255-258. [16] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based Learning Ap- plied to Document Recognition. Proceedings of the Institute of Electrical and Electronics Engineers, 86(11), 2278-2324. [17] Martin, T., Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesús, O. D. (2014). Neural Network Design. Martin Hagan. [18] Nakahara, M., & Ohmi, T. (2008). Quantum Ccomputing From Linear Algebra to Physical Realizations. Chemical Rubber Company Press. [19] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Infor- mation. University Press of Cambridge. [20] Sakurai, J. J., & Napolitano, J.J. (2014). Modern Quantum Mechanics. Pearson Edu- cation Limited. [21] Scherer, W. (2019). Mathematics of Quantum Computing. Springer Nature Switzerland AG. [22] Shankar, R. (1994). Principles of Quantum Mechanics. Plenum Press. [23] Susskind, L., & Friedman, A. (2014). Quantum Mechanics, The Theoretical Minimum. Perseus Books Group. [24] Wang, Z., & Oates, T. (2015). Imaging Time-Series to Improve Classification and Impu- tation. Proceedings of the International Conference on Artificial Intelligence, 3939-3945. [25] Wu, J. (2017). Introduction to Convolutional Neural Networks. Nanjing University. [26] Zettili, N. (2009). Quantum Mechanics Concepts and Applications. John Wiley & Sons Limited. |